Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Immersion solvent

Bagheri, H., A. Saber, and S.R. Mousavi. 2004. Immersed solvent microextraction of phenol and chloro-phenols from water samples followed by gas chromatography-mass spectrometry. J. Chromatogr. A 1046 27-33. [Pg.468]

Selective Spray Immersion Solvent Extraction Solvent Atmospheric Plasma Low Pressure (Vacuum) Plasma UV-Ozone Treatment Microabrasive Snow... [Pg.1088]

While evidence for hydration forces date back to early work on clays [1], the understanding of these solvent-induced forces was revolutionized by Horn and Israelachvili using the modem surface force apparatus. Here, for the first time, one had a direct measurement of the oscillatory forces between crossed mica cylinders immersed in a solvent, octamethylcyclotetrasiloxane (OMCTS) [67]. [Pg.243]

Self-assembled monolayers (SAMs) are molecular layers tliat fonn spontaneously upon adsorjDtion by immersing a substrate into a dilute solution of tire surface-active material in an organic solvent [115]. This is probably tire most comprehensive definition and includes compounds tliat adsorb spontaneously but are neither specifically bonded to tire substrate nor have intennolecular interactions which force tire molecules to organize tliemselves in tire sense tliat a defined orientation is adopted. Some polymers, for example, belong to tliis class. They might be attached to tire substrate via weak van der Waals interactions only. [Pg.2620]

In contrast to tire preparation of LB films, tliat of SAMs is fairly simple and no special equipment is required. The inorganic substrate is simply immersed into a dilute solution of tire surface active material in an organic solvent (typically in tire mM range) and removed after an extended period ( 24 h). Subsequently, tire sample is rinsed extensively witli tire solvent to remove any excess material (wet chemical preparation). [Pg.2622]

The input to a minimisation program consists of a set of initial coordinates for the system. The initial coordinates may come from a variety of sources. They may be obtained from an experimental technique, such as X-ray crystallography or NMR. In other cases a theoretical method is employed, such as a conformational search algorithm. A combination of experimenfal and theoretical approaches may also be used. For example, to study the behaviour of a protein in water one may take an X-ray structure of the protein and immerse it in a solvent bath, where the coordinates of the solvent molecules have been obtained from a Monte Carlo or molecular dynamics simulation. [Pg.275]

A drop of an aqueous solution of the mixture to be separated is now placed near the bottom of the paper strip and allowed to evaporate in the air. The strip is now again suspended in the closed cylinder, but with the bottom of the strip just immersed in the solvent. The capillary action of the paper will cause the solvent to rise steadily up the strip, and during this process the solvent, which now contains the mixture in solution, is continuously extracted by the retained water molecules in the paper. A highly hydrophobic (water-repellent) solute will move up closely behind the solvent-front, whereas a highly hydrophilic solute will barely leave the original point where the drop of the mixed solutes in solution has been dried. In an intermediate case,... [Pg.50]

Method 1. Equip a 1 litre three-necked flask (or bolt-head flask) with a separatory funnel, a mechanical stirrer (Fig. II, 7, 10), a thermometer (with bulb within 2 cm. of the bottom) and an exit tube leading to a gas absorption device (Fig. II, 8, 1, c). Place 700 g. (400 ml.) of chloro-sulphonic acid in the flask and add slowly, with stirring, 156 g. (176 ml.) of pure benzene (1) maintain the temperature between 20° and 25° by immersing the flask in cold water, if necessary. After the addition is complete (about 2 5 hours), stir the mixture for 1 hour, and then pour it on to 1500 g. of crushed ice. Add 200 ml. of carbon tetrachloride, stir, and separate the oil as soon as possible (otherwise appreciable hydrolysis occurs) extract the aqueous layer with 100 ml. of carbon tetrachloride. Wash the combined extracts with dilute sodium carbonate solution, distil off most of the solvent under atmospheric pressure (2), and distil the residue under reduced pressure. Collect the benzenesulphonyl chloride at 118-120°/15 mm. it solidifies to a colourless sohd, m.p. 13-14°, when cooled in ice. The yield is 270 g. A small amount (10-20 g.) of diphen3 lsulphone, b.p. 225°/10 mm., m.p. 128°, remains in the flask. [Pg.822]

HyperChem allows solvation of arbitrary solutes (including no solute) in water, to simulate aqueous systems. HyperChem uses only rectangular boxes and applies periodic boundary conditions to the central box to simulate a constant-density large system. The solvent water molecules come from a pre-equilibrated box of water. The solute is properly immersed and aligned in the box and then water molecules closer than some prescribed distance are omitted. You can also put a group of non-aqueous molecules into a periodic box. [Pg.201]

Microreticular Resins. Microreticular resins, by contrast, are elastic gels that, in the dry state, avidly absorb water and other polar solvents in which they are immersed. While taking up solvent, the gel structure expands until the retractile stresses of the distended polymer network balance the osmotic effect. In nonpolar solvents, little or no swelling occurs and diffusion is impaired. [Pg.1109]

Table 6. Swelling on Immersion in Various Solvents for the Commercial Parylenes at Room Temperature... Table 6. Swelling on Immersion in Various Solvents for the Commercial Parylenes at Room Temperature...
The sohd can be contacted with the solvent in a number of different ways but traditionally that part of the solvent retained by the sohd is referred to as the underflow or holdup, whereas the sohd-free solute-laden solvent separated from the sohd after extraction is called the overflow. The holdup of bound hquor plays a vital role in the estimation of separation performance. In practice both static and dynamic holdup are measured in a process study, other parameters of importance being the relationship of holdup to drainage time and percolation rate. The results of such studies permit conclusions to be drawn about the feasibihty of extraction by percolation, the holdup of different bed heights of material prepared for extraction, and the relationship between solute content of the hquor and holdup. If the percolation rate is very low (in the case of oilseeds a minimum percolation rate of 3 x 10 m/s is normally required), extraction by immersion may be more effective. Percolation rate measurements and the methods of utilizing the data have been reported (8,9) these indicate that the effect of solute concentration on holdup plays an important part in determining the solute concentration in the hquor leaving the extractor. [Pg.88]

Batch Extractors. Coarse soHds are leached by percolation in fixed or moving-bed equipment. Both open and closed tanks (qv) having false bottoms are used, into which the soHds are dumped to a uniform depth and then treated with the solvent by percolation, immersion, or intermittent drainage methods. [Pg.90]

Immersion-type extractors have been made continuous through the inclusion of screw conveyors to transport the soHds. The Hildebrandt immersion extractor (18) employs a sequence of separate screw conveyors to move soHds through three parts of a U-shaped extraction vessel. The helix surface is perforated so that solvent can pass through the unit in the direction countercurrent to the flow of soHds. The screw conveyors rotate at different speeds so that the soHds are compacted as they travel toward the discharge end of the unit. Alternative designs using fewer screws are also available. [Pg.93]

Spinbath concentration can be adjusted to obtain the desired microstmcture. Low spinbath concentration promotes rapid solvent extraction but this also produces a thick skin on each filament which ultimately reduces the rate of solvent extraction and may lead to the formation of macrovoids. High spinbath concentrations give a denser microstmcture, but solvent extraction is slow and filament fusion can occur. Other spinbath conditions that affect coagulation and microstmcture are dope soHds, spinbath temperature, jet stretch, and immersion time. [Pg.281]

The immersion of glass electrodes in strongly dehydrating media should be avoided. If the electrode is used in solvents of low water activity, frequent conditioning in water is advisable, as dehydration of the gel layer of the surface causes a progressive alteration in the electrode potential with a consequent drift of the measured pH. Slow dissolution of the pH-sensitive membrane is unavoidable, and it eventually leads to mechanical failure. Standardization of the electrode with two buffer solutions is the best means of early detection of incipient electrode failure. [Pg.466]

Phase Inversion (Solution Precipitation). Phase inversion, also known as solution precipitation or polymer precipitation, is the most important asymmetric membrane preparation method. In this process, a clear polymer solution is precipitated into two phases a soHd polymer-rich phase that forms the matrix of the membrane, and a Hquid polymer-poor phase that forms the membrane pores. If precipitation is rapid, the pore-forming Hquid droplets tend to be small and the membranes formed are markedly asymmetric. If precipitation is slow, the pore-forming Hquid droplets tend to agglomerate while the casting solution is stiU fluid, so that the final pores are relatively large and the membrane stmcture is more symmetrical. Polymer precipitation from a solution can be achieved in several ways, such as cooling, solvent evaporation, precipitation by immersion in water, or imbibition of... [Pg.63]

Fig. 9. SEM photographs of cellulose acetate membranes cast from a solution of acetone (volatile solvent) and 2-meth5l-2,4-pentanediol (nonvolatile solvent). The evaporation time before the stmcture is fixed by immersion ia water is shown (24). Fig. 9. SEM photographs of cellulose acetate membranes cast from a solution of acetone (volatile solvent) and 2-meth5l-2,4-pentanediol (nonvolatile solvent). The evaporation time before the stmcture is fixed by immersion ia water is shown (24).
Interfdci l Composite Membra.nes, A method of making asymmetric membranes involving interfacial polymerization was developed in the 1960s. This technique was used to produce reverse osmosis membranes with dramatically improved salt rejections and water fluxes compared to those prepared by the Loeb-Sourirajan process (28). In the interfacial polymerization method, an aqueous solution of a reactive prepolymer, such as polyamine, is first deposited in the pores of a microporous support membrane, typically a polysulfone ultrafUtration membrane. The amine-loaded support is then immersed in a water-immiscible solvent solution containing a reactant, for example, a diacid chloride in hexane. The amine and acid chloride then react at the interface of the two solutions to form a densely cross-linked, extremely thin membrane layer. This preparation method is shown schematically in Figure 15. The first membrane made was based on polyethylenimine cross-linked with toluene-2,4-diisocyanate (28). The process was later refined at FilmTec Corporation (29,30) and at UOP (31) in the United States, and at Nitto (32) in Japan. [Pg.68]


See other pages where Immersion solvent is mentioned: [Pg.436]    [Pg.173]    [Pg.128]    [Pg.84]    [Pg.436]    [Pg.173]    [Pg.128]    [Pg.84]    [Pg.179]    [Pg.201]    [Pg.330]    [Pg.16]    [Pg.49]    [Pg.5]    [Pg.111]    [Pg.206]    [Pg.291]    [Pg.825]    [Pg.864]    [Pg.930]    [Pg.49]    [Pg.121]    [Pg.144]    [Pg.148]    [Pg.44]    [Pg.89]    [Pg.299]    [Pg.399]    [Pg.90]    [Pg.64]    [Pg.65]    [Pg.65]   
See also in sourсe #XX -- [ Pg.78 ]




SEARCH



Immersed

Immersion

© 2024 chempedia.info