Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Imidazolines, addition

Reactions of Acetoin and Aldehydes with Ammonium Sulfide. This reaction leads to the various substituted oxazolines, thiazolin-es, and Imidazolines. Additional heterocyclic systems identified in this reaction include thiophenes and pyrazines. All these products are important aroma compounds in the food industry. [Pg.48]

In addition to their antiknock properties, organic lead compounds possess bactericidal properties and motor fuels with lead are known to inhibit bacterial growth during storage in contact with water. With the disappearance of lead-based compounds, it is necessary to incorporate biocides from the cyclic imine family, (piperidine, pyrrolidine, hexamethyleneimine), alkylpropylene diamines or imidazolines (Figure 9.2). [Pg.351]

Oil field uses are primarily imidazolines for surfactant and corrosion inhibition (see Petroleum). Besides the lubrication market for metal salts, the miscellaneous market is comprised of free acids used ia concrete additives, motor oil lubricants, and asphalt-paving applications (47) (see Asphalt Lubrication AND lubricants). Naphthenic acid has also been studied ia ore flotation for recovery of rare-earth metals (48) (see Flotation Lanthanides). [Pg.512]

In addition to the mono- and dialkylamines, representative stmctures of this class of surfactants include /V-alkyltrimethylene diamine, RNH(CH2)3NH2, where the alkyl group is derived from coconut, tallow, and soybean oils or is 9-octadecenyl, 2-aLkyl-2-imidazoline (3), where R is heptadecyl, heptadecenyl, or mixed alkyl, and l-(2-aniinoethyl)-2-aLk5l-2-imidazoline (4), where R is heptadecyl, 8-heptadecenyl, or mixed alkyl. [Pg.255]

After cooling, unreacted ethylenediamine is neutralized in a cooling mixture with the absolute ethanolic hydrochloric acid, filtered off from any components that are insoluble in ethanol and approximately two-thirds of the solvent filtered off under suction in a water jet pump vacuum. Residual quantities of ethylenediamine dihydrochloride are precipitated in fractions by the careful addition of ethyl methyl ketone, after which the imidazoline hydrochloride is separated off by the addition of dry ether. Following repeated recrystallization from ethanol ether, 2-[0(-(2,6-dichlorophenoxy)ethyl] -A -imidazoline hydrochloride is obtained in the form of small white crystals melting at 221°C to 223°C. [Pg.881]

Peters R, Fischer DF (2005) Preparation and diastereoselective ort/io-metalation of chiral ferrocenyl imidazolines remarkable influence of LDA as metalation additive. Org Lett 7 4137 140... [Pg.173]

Quatemized imidazolines with an amido moiety are suitable formulations for general oil and gas field applications. The synthesis of such compounds is detailed in the literature [1218]. For aqueous systems that contain sulfide compounds, a mixture has been described [262] that consists of an aqueous solution of an alcohol such as diethylene glycol monobutyl ether, butyl cellosolve, additional orthophosphoric acid, a fatty acid (from tall oil), substituted imidazoline, an ethoxylated fatty diamine (polyamines such as ethylenediamine, diethylenetriamine, etc.), and a molybdate compound. [Pg.96]

Microwave-induced 1,3-dipolar cycloadditions involving azomethine ylides have been widely reported in the literature. Bazureau showed that imidates derived from a-amino esters 120, as potential azomethine ylides, undergo 1,3-dipolar cyclo-additions with imino-alcohols 121 in the absence of solvent under microwave irradiation. This reaction leads to polyfunctionalized 4-yliden-2-imidazolin-5-ones 122 (Scheme 9.36) [87]. [Pg.317]

Owing to the existence of two centers for nucleophilic attack (at C2 and C5) in radical cations (220) obtained from the oxidation of 4-H -imidazole-1,3-dioxides (219), the formation of two products of methoxy group addition was observed, namely NNR (221) and NR of 3-imidazoline-3-oxide (222). The ratio of the products depends on the electronic nature of substitutes R1 and R2. Both, the donor character of R1 and acceptor character of R2 facilitate the formation of nitroxyl radicals (222) with the yield of (221) increasing with the inverted effect of the substituents. As was mentioned in Section 2.4, the results of preparative electrochemical oxidative methoxylation of 4H -imidazole-1,3-dioxides are similar to the results of chemical oxidation. [Pg.215]

In addition to the oxidative alkoxylation of 4H -imidazole and oxazolidine derivatives, the reaction was also used with other cyclic aldo-nitrones such as DMPO, derivatives of 3-imidazoline-3-oxide (228-232) (506), and derivatives... [Pg.215]

The formation of derivatives of 2,3,6,8-tetraazabicyclo-[3.2.1]3-octene (425) arises from an intramolecular nucleophilic addition to the nitrone group of hydra-zone (424). Compound (424) was prepared by reaction of 2-acyl-3-imidazoline-3-oxides (423) with hydrazine. From the cis- and frans-derivatives (424), exo- and enr/o-isomers (425) were obtained (Scheme 2.197). The reaction of intramolecular cyclization does not occur in cases with monosubstituted hydrazones (316). [Pg.290]

By using diamines, the 2-alkyl-(benzo)imidazolines 581 and 582 were formed by a double Michael addition reaction and subsequent elimination of MeCN [266, 267]. [Pg.685]

Besides the addition of non-carbon nucleophiles to carbonyl and isonitrile complexes (Tables 2.2, 2.4), heteroatom-disubstituted carbene complexes can be prepared by direct addition of stable or latent carbenes to suitable complexes. The synthetic routes sketched in Figure 2.12 are those commonly used for preparing imidazoline-2-ylidene or imidazolidine-2-ylidene complexes. [Pg.29]

Although these two methods have found widespread application for the synthesis of free carbenes, they failed for selected saturated imidazolidin-2-ylidenes and especially in the preparation of triazolin-5-ylidenes. In these cases the free carbene species 7 can be obtained from 2-alkoxyimidazolidines 6 [44] or 5-aUcoxytriazoles [36] by thermally induced ot-elimination of an alcohol (Fig. 5). In addition to 2-aUcoxyimidazolidmes, 2-(pentafluorophenyl)imidazolidines [45, 46] have also been used for the generation of NHCs by cx-elimination. The adduct 8 eliminates acetonitrile upon heating [47] to yield the benzimidazolin-2-ylidene 9. In a more exotic procedure, imidazolium salts have been reduced electrochemically to give the free imidazolin-2-ylidenes [48]. [Pg.100]

In order to vary the electronic situation at the carbene carbon atom a number of carbo- and heterocycle-annulated imidazolin-2-ylidenes like the benzobis(imida-zolin-2-ylidenes) [58-60] and the singly or doubly pyrido-annulated A -heterocyclic carbenes [61-63] have been prepared and studied. Additional carbenes derived from a five-membered heterocycle like triazolin-5-ylidenes 10 [36], which reveals properties similar to the imidazolin-2-ylidenes 5 and thiazolin-2-ylidene 11 [37] exhibiting characteristic properties comparable to the saturated imidazolidin-2ylidenes 7 have also been prepared. Bertrand reported the 1,2,4-triazolium dication 12 [64]. Although all attempts to isolate the free dicarbene species from this dication have failed so far, silver complexes [65] as well as homo- and heterobimetallic iridium and rhodium complexes of the triazolin-3,5-diylidene have been prepared [66]. The 1,2,4-triazolium salts and the thiazolium salts have been used successfully as precatalysts for inter- [67] and intramolecular benzoin condensations [68]. [Pg.102]

For example, complex 37 with an imidazolin-2-ylidene and a methyl ligand in cis-position to each other decomposes to yield the 1,2,3-trimethylimidazolium salt 38, Pd°, and cod (Fig. 13) [124], Additional examples for the reductive elimination of 2-alkyl and 2-aryl substituted azohum salts from palladium or nickel NHC complexes have been reported [125, 126]. Today, reductive elimination reactions have been established as one important reaction pathway for the deactivation of catalytically active metal NHC complexes [126, 127]. [Pg.109]

Additional factors which lead to an increased stability of the carbene complexes towards reductive ehmination are the type of NHC ligand and the NA -substitution pattern. The stability of NHC complexes depends strongly on the electronic situation at the carbene center. The oxidative addition of p-tolyl chloride to linear Pd° complexes bearing two unsaturated imidazolin-2-ylidenes (type 5, Fig. 6) or two saturated imidazolidin-2-ylidenes (t3q>e 7, Fig. 6) proceeds readily. The Pd complex with the imidazolin-2-yhdene ligands is stable, while the one with the imida-zolidin-2-ylidene ligands reductively ehminates the C2-arylated imidazolidinium salt [134]. [Pg.110]

In the case of thiazoline-2(3//)-thiones, the mesoionic thiazolo[2,3-h][l,3,4]thiadiazoles are obtained by two different routes (Scheme 65). On the one hand, thione 166 reacts with isothiocyanate via intermediate 167 and with a second equivalent isothiocyanate to afford the mesoionic 168 on the other hand, in the presence of isocyanate, the thione preferentially dimerizes 167 with the open-chain carbodiimide 169 to give the mesoionic 170. Addition of acid with removal of an amine group converts 170 into the symmetric heteroaromatic amine (171) (88CB1495 92T1285). The related transformation of an imidazoline into 1,3,4-thiadiazoles has also been described (90T4353). [Pg.196]

Fig. 10 Synthesis of imidazolines or benzimidazoles by condensation of an additional amine with the carboxylic acid-derived carbonyl... Fig. 10 Synthesis of imidazolines or benzimidazoles by condensation of an additional amine with the carboxylic acid-derived carbonyl...
In 2003, we reported a multicomponent approach toward highly substituted 2H-2-imidazolines (65) [157]. This 3CR is based on the reactivity of isocyano esters (1) toward imines as was studied in detail by Schollkopf in the 1970s [76]. In our reaction, an amine and an aldehyde were stirred for 2 h in the presence of a drying agent (preformation of imine). Subsequent addition of the a-acidic isocyanide 64 resulted in the formation of the corresponding 2//-2-imidazolines (65) after 18 h in moderate to excellent yield. The mechanism for this MCR probably involves a Mannich-type addition of a-deprotonated isocyanide to (protonated) imine (66) followed by a ring closure and a 1,2-proton shift of intermediate 68 (Fig. 21). However, a concerted cycloaddition of 66 and deprotonated 64 to produce 65 cannot be excluded. [Pg.148]

Other (less acidic) ot-substituted isocyano acetates (1, R = H, Me, /Bu, /Pr) [159]. Silver(l) salts (AgOAc) were found to accelerate the reaction, probably by coordination of the terminal NC carbon atom to Ag which increases the a-acidity and NC electrophilicity (Fig. 22). Remarkably, unlike most other reactions reported with a-acidic isonitriles, no additional base or acid is required for the three-component coupling to 2//-2-imidazolines 65. Most likely, the intermediate imine is basic enough to deprotonate the isocyanide. [Pg.149]


See other pages where Imidazolines, addition is mentioned: [Pg.57]    [Pg.57]    [Pg.512]    [Pg.49]    [Pg.243]    [Pg.266]    [Pg.213]    [Pg.1596]    [Pg.1596]    [Pg.140]    [Pg.12]    [Pg.22]    [Pg.97]    [Pg.120]    [Pg.177]    [Pg.107]    [Pg.157]    [Pg.963]    [Pg.23]    [Pg.13]    [Pg.28]    [Pg.107]    [Pg.114]    [Pg.118]    [Pg.52]    [Pg.136]    [Pg.137]    [Pg.149]    [Pg.151]    [Pg.262]   
See also in sourсe #XX -- [ Pg.379 ]




SEARCH



Imidazoline

© 2024 chempedia.info