Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Illustrative Problems in Reactor Design

This chapter contains a discussion of two intermediate level problems in chemical reactor design that indicate how the principles developed in previous chapters are applied in making preliminary design calculations for industrial scale units. The problems considered are the thermal cracking of propane in a tubular reactor and the production of phthalic anhydride in a fixed bed catalytic reactor. Space limitations preclude detailed case studies of these problems. In such studies one would systematically vary all relevant process parameters to arrive at an optimum reactor design. However, sufficient detail is provided within the illustrative problems to indicate the basic principles involved and to make it easy to extend the analysis to studies of other process variables. The conditions employed in these problems are not necessarily those used in current industrial practice, since the data are based on literature values that date back some years. [Pg.540]

This problem indicates the considerations that enter into the design of a tubular reactor for an endothermic reaction. The necessity of supplying thermal energy to the reactor contents at an elevated temperature implies that the heat transfer considerations will be particularly important in determining the longitudinal temperature profile of the reacting fluid. This problem is based on an article by Fair and Rase (1). [Pg.540]

A proposed expansion of the corporation s polyethylene production capacity will require additional ethylene monomer as a feedstock. It is suggested that the ethylene be produced by the pyrolysis of a propane stream that is available at axrate of 7000 lb/hr. [Pg.540]

The most common type of commercial pyrolysis equipment is the direct fired tubular heater in which the reacting material flows through several tubes connected in series. The tubes receive thermal energy by being immersed in an oil or gas furnace. The pyrolysis products are cooled rapidly after leaving the furnace and enter the separation train. Constraints on materials of construction limit the maximum temperature of the tubes to 1500 °F. Thus the effluent from the tubes should be restricted to temperatures of 1475 °F or less. You may presume that all reactor tubes and return bends are exposed to a thermal flux of 10,000 BTU/ [Pg.540]

Data Summary. There is an extensive literature dealing with hydrocarbon pyrolysis reactions. The articles by Schutt (2) and Fair and [Pg.541]


Example 4.2 used the method of false transients to solve a steady-state reactor design problem. The method can also be used to find the equilibrium concentrations resulting from a set of batch chemical reactions. To do this, formulate the ODEs for a batch reactor and integrate until the concentrations stop changing. This is illustrated in Problem 4.6(b). Section 11.1.1 shows how the method of false transients can be used to determine physical or chemical equilibria in multiphase systems. [Pg.123]

The material on catalysis and heterogeneous reactions in Chapters 6, 1%, and 13 is a useful framework for an intermediate level graduate course in catalysis and chemical reactor design. In the latter course emphasis is placed on developing the student s ability to analyze critically actual kinetic data obtained from the literature in order to acquaint him with many of the traps into which the unwary may fall. Some of the problems in Chapter 12 and the illustrative case studies in Chapter 1 3 have evolved from this course. [Pg.599]

Most of the illustrative examples and problems in the text are based on actual data from the kinetics literature. However, in many cases, rate constants, heats of reaction, activation energies, and other parameters have been converted to SI units from various other systems. To be able to utilize the vast literature of kinetics for reactor design purposes, one must develop a facility for making appropriate transformations of parameters from one system of urtits to another. Consequently, I have chosen not to employ SI units exclusively in this text. [Pg.599]

In practice, every chemical reaction carried out on a commercial scale involves the transfer of reactants and products of reaction, and the absorption or evolution of heat. Physical design of the reactor depends on the required structure and dimensions of the reactor, which must take into account the temperature and pressure distribution and the rate of chemical reaction. In this chapter, after describing the methods of formulating optimization problems for reactors and the tools for their solution, we will illustrate the techniques involved for several different processes. [Pg.481]

To provide an illustration of some of the challenges of polymerization reaction engineering, we shall discuss here a few intriguing but practically important research problems which arise in the design of polymerization reactors. These examples reflect the author s own interest and are selected from research projects currently underway at the University of Wisconsin. [Pg.119]


See other pages where Illustrative Problems in Reactor Design is mentioned: [Pg.540]    [Pg.542]    [Pg.544]    [Pg.546]    [Pg.548]    [Pg.550]    [Pg.552]    [Pg.554]    [Pg.556]    [Pg.558]    [Pg.560]    [Pg.562]    [Pg.564]    [Pg.566]    [Pg.568]    [Pg.540]    [Pg.542]    [Pg.544]    [Pg.546]    [Pg.548]    [Pg.550]    [Pg.552]    [Pg.554]    [Pg.556]    [Pg.558]    [Pg.560]    [Pg.562]    [Pg.564]    [Pg.566]    [Pg.568]    [Pg.9]    [Pg.599]    [Pg.211]    [Pg.267]    [Pg.257]    [Pg.572]    [Pg.227]    [Pg.245]    [Pg.103]    [Pg.351]    [Pg.329]    [Pg.663]    [Pg.250]    [Pg.52]    [Pg.254]    [Pg.10]    [Pg.109]    [Pg.32]    [Pg.363]    [Pg.123]    [Pg.117]    [Pg.293]    [Pg.301]    [Pg.641]    [Pg.1]    [Pg.261]    [Pg.29]    [Pg.122]   


SEARCH



Design problem

© 2024 chempedia.info