Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydroxyls esterification

Rea.ctlons, The chemistry of butanediol is deterrnined by the two primary hydroxyls. Esterification is normal. It is advisable to use nonacidic catalysts for esterification and transesterification (122) to avoid cycHc dehydration. When carbonate esters are prepared at high dilutions, some cycHc ester is formed more concentrated solutions give a polymeric product (123). With excess phosgene the usefiil bischloroformate can be prepared (124). [Pg.108]

The uses of butanediol are determined by the chemistry of the two primary hydroxyls. Esterification is normal and it is advisable to use nonacidic... [Pg.99]

Therefore, we have decided to apply the same strategy used in the case of 4-hydroxyl to 7-hydroxyl, esterifing this flmctional group with a fatty acid that has a medium chain as caprylic acid. Compound Ip has been obtained and the chemical procedure adopted for the synthesis of compound Ip is described in the Scheme F. [Pg.128]

Diazoalkanes 2.8 Selective alkylation of acidic functions in the presence of aliphatic hydroxyls esterification The reaction should be alkyl homogeneous (see Note, procedure 2.8) de-O-acetylation... [Pg.112]

H Hydroxyl Esterification (formation of an ester) with carboxybc acids oxidation to aldehydes, ketones, and carboxylic acids... [Pg.380]

Most of the approximately ninety Brickellia (Eupatorieae Alomiinae) species inhabit the North American deserts, although three species are South American disjuncts. The diterpene chemistries of the ten investigated taxa (Table 6 [p. 441] Figure 19 [pp. 457-461]) are remarkably uniform. Normal-labdanes often characterized by novel 2a,3o -hydroxylation/esterification occur in all diterpene-producing species. In B. eupatoriedes, these 2a,3a-substituted normal-labdanes co-occurred with cleistanthanes and other eAtf-pimarane-derived skeletal types. Production of normal-labdanes together with tri- and polycyclic ewMabdane-derived skeletons is an often-repeated theme in the diterpene chemistries of Compositae taxa. [Pg.434]

Hydroxy acids compounds that contain both a hydroxyl and a carboxylic acid function have the capacity to form cyclic esters called lactones This intramolecular esterification takes place spontaneously when the ring that is formed is five or six membered Lac tones that contain a five membered cyclic ester are referred to as 7 lactones, their six membered analogs are known as 8 lactones... [Pg.814]

Section 19 15 An intramolecular esterification can occur when a molecule contains both a hydroxyl and a carboxyl group Cyclic esters are called lactones and are most stable when the nng is five or six membered... [Pg.823]

Another series of antiinflammatory carboxyhc acids that ate derived from cortienic acid (107), a minor adrenal metabohte, has been described (104,105). Esterification of both the 17a-hydroxyl group and the carboxyhc acid of (107) were requited to develop a compound of high topical potency with low systemic activity. Peak activity was generally associated with a 17a-propionoxy group and a 17P- uoromethoxy carbonyl (eg, (108)), or 17P-methoxycarbonyl residue. [Pg.106]

Acetic anhydride acetylates free hydroxyl groups without a catalyst, but esterification is smoother and more complete ia the presence of acids. For example, ia the presence of -toluenesulfonic acid [104-15-4], the heat of reaction for ethanol and acetic anhydride is —60.17 kJ/mol (—14.38 kcal/mol) (13) ... [Pg.75]

Esters. Most acryhc acid is used in the form of its methyl, ethyl, and butyl esters. Specialty monomeric esters with a hydroxyl, amino, or other functional group are used to provide adhesion, latent cross-linking capabihty, or different solubihty characteristics. The principal routes to esters are direct esterification with alcohols in the presence of a strong acid catalyst such as sulfuric acid, a soluble sulfonic acid, or sulfonic acid resins addition to alkylene oxides to give hydroxyalkyl acryhc esters and addition to the double bond of olefins in the presence of strong acid catalyst (19,20) to give ethyl or secondary alkyl acrylates. [Pg.150]

The synthesis of 2,4-dihydroxyacetophenone [89-84-9] (21) by acylation reactions of resorcinol has been extensively studied. The reaction is performed using acetic anhydride (104), acetyl chloride (105), or acetic acid (106). The esterification of resorcinol by acetic anhydride followed by the isomerization of the diacetate intermediate has also been described in the presence of zinc chloride (107). Alkylation of resorcinol can be carried out using ethers (108), olefins (109), or alcohols (110). The catalysts which are generally used include sulfuric acid, phosphoric and polyphosphoric acids, acidic resins, or aluminum and iron derivatives. 2-Chlororesorcinol [6201-65-1] (22) is obtained by a sulfonation—chloration—desulfonation technique (111). 1,2,4-Trihydroxybenzene [533-73-3] (23) is obtained by hydroxylation of resorcinol using hydrogen peroxide (112) or peracids (113). [Pg.491]

Acetylation of hydroxyl groups and esterification of carboxyl groups have been observed ia a limited number of cases but, ia geaeral, have ao preparative advantage over chemical methods. By comparison, phosphorylation has been useful ia the preparatioa of modified purine and pyrimidine mononucleotides from their corresponding nucleosides, eg, 6-thioguanosiae [85-31-4] (51) (97). [Pg.314]

Oxidation of polysaccharides is a far more attractive route to polycarboxylates, potentially cleaner and less cosdy than esterification. Selectivity at the 2,3-secondary hydroxyls and the 6-primary is possible. Total biodegradation with acceptable property balance has not yet been achieved. For the most part, oxidations have been with hypochlorite—periodate under alkaline conditions. In the 1990s, catalytic oxidation has appeared as a possibiUty, and chemical oxidations have also been developed that are specific for the 6-hydroxyl oxidation. [Pg.483]

Etherification and esterification of hydroxyl groups produce derivatives, some of which are produced commercially. Derivatives may also be obtained by graft polymerization wherein free radicals, initiated on the starch backbone by ceric ion or irradiation, react with monomers such as vinyl or acrylyl derivatives. A number of such copolymers have been prepared and evaluated in extmsion processing (49). A starch—acrylonitrile graft copolymer has been patented (50) which rapidly absorbs many hundred times its weight in water and has potential appHcations in disposable diapers and medical suppHes. [Pg.342]

Sulfonate Esters. Sucrose sulfonates are valuable intermediates for the synthesis of epoxides and derivatives containing halogens, nitrogen, and sulfur. In addition, the sulfonation reaction has been used to determine the relative reactivity of the hydroxyl groups in sucrose. The general order of reactivity in sucrose toward the esterification reaction is OH-6 OH-6 > OH-1 > HO-2. [Pg.34]

A series of sorbitol-based nonionic surfactants are used ia foods as water-ia-oil emulsifiers and defoamers. They are produced by reaction of fatty acids with sorbitol. During reaction, cycHc dehydration as well as esterification (primary hydroxyl group) occurs so that the hydrophilic portion is not only sorbitol but also its mono- and dianhydride. The product known as sorbitan monostearate [1338-41 -6] for example, is a mixture of partial stearic and palmitic acid esters (sorbitan monopalmitate [26266-57-9]) of sorbitol, 1,5-anhydro-D-glucitol [154-58-8] 1,4-sorbitan [27299-12-3] and isosorbide [652-67-5]. Sorbitan esters, such as the foregoing and also sorbitan monolaurate [1338-39-2] and sorbitan monooleate [1338-43-8], can be further modified by reaction with ethylene oxide to produce ethoxylated sorbitan esters, also nonionic detergents FDA approved for food use. [Pg.480]

Esterification. The hydroxyl groups of sugars can react with organic and inorganic acids just as other alcohols do. Both natural and synthetic carbohydrate esters are important in various apphcations (1,13). Phosphate monoesters of sugars are important in metabohc reactions. An example is the enzyme-catalyzed, reversible aldol addition between dibydroxyacetone phosphate [57-04-51 and D-ylyceraldehyde 3-phosphate [591-57-1 / to form D-fmctose 1,6-bisphosphate [488-69-7],... [Pg.481]

Every polysaccharide contains glycosyl units with unsubstituted hydroxyl groups available for esterification or etherification. Polysaccharide derivatives are described by their degree of substitution (DS), which is the average number of substituent groups per glycosyl unit. Because each monomeric unit of cellulose molecules has free hydroxyl groups at C-2, C-3, and C-6, the maximum DS for cellulose, and all polysaccharides composed exclusively of neutral hexosyl units, the majority of polysaccharides, is 3.0. [Pg.484]

Pentaerythritol with its four primary hydroxyl groups is used for the preparation of tetraesters and presents Httie difficulty except for its high melting point of 263°C, when pure. Pentaerythritol tetraesters are used in aircraft lubes, synthetic drying oils, and alkyds. Esters derived from trimethylo1 alkanes and dipentaerythritol are also used in alkyd resins (qv). Esterification may take place in situ during preparation of the alkyd. [Pg.85]

Of these, the CGA isomers are the principal acids and result from the esterification of the 3, 4, and 5 position hydroxyls of quinic acid with the carboxyls of several phenoHc acids, including caffeic acid (C) [331-39-5], ferruHc acid (F) [1135-24-6], andT -coumaric acid (Cm) [501 -98 ]. [Pg.385]


See other pages where Hydroxyls esterification is mentioned: [Pg.17]    [Pg.557]    [Pg.277]    [Pg.1047]    [Pg.823]    [Pg.202]    [Pg.17]    [Pg.557]    [Pg.277]    [Pg.1047]    [Pg.823]    [Pg.202]    [Pg.1014]    [Pg.105]    [Pg.239]    [Pg.375]    [Pg.516]    [Pg.516]    [Pg.310]    [Pg.482]    [Pg.36]    [Pg.42]    [Pg.537]    [Pg.346]    [Pg.51]    [Pg.66]    [Pg.22]    [Pg.85]    [Pg.242]    [Pg.265]    [Pg.321]    [Pg.339]    [Pg.107]   
See also in sourсe #XX -- [ Pg.92 ]




SEARCH



© 2024 chempedia.info