Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydroxylation chiral

The simple aldoses are related to d- and L-glyceraldehyde in that structurally they may be considered to be derived from glyceraldehyde by the introduction of hydroxylated chiral carbon atoms between C-l and C-2 of the glyceraldehyde molecule. Thus, two tetroses result when CHOH is introduced into D-glyceraldehyde ... [Pg.27]

Although dihydroxyacetone does not possess a chiral carbon atom, the simple ketoses are related to it structurally by the introduction of hydroxylated chiral carbon atoms between the keto group and one of the hydroxymethyl groups. Thus there are two ketotetroses, four ketopentoses, and eight ketohexoses. [Pg.30]

These are related to d- and L-glyceraldehyde and can be viewed as having been stractnrally derived from them by the introduction of a hydroxylated chiral carbon atom between C-1 and C-2 (Fig. 3-2). Thus there are four aldotetroses. [Pg.65]

In this review we have drawn attention to the wide application of physical methods, especially high field NMR spectroscopy, in the determination of the structures and relative stereochemistry of 5,6-dihydro-a-pyrones. The modified Mosher method 24) has proved to be a useful tool to explore the absolute stereochemistry of hydroxylated chiral centres in the side chains routinely found in this group of compounds. The contiguous arrangement of these hydroxylated chiral centers in many of the side chains has also seen increased use made of... [Pg.201]

Relative to each other both hydroxyl groups are on the same side m Fischer pro jections of the erythrose enantiomers The remaining two stereoisomers have hydroxyl groups on opposite sides m their Fischer projections They are diastereomers of d and L erythrose and are called d and l threose The d and l prefixes again specify the con figuration of the highest numbered chirality center d Threose and l threose are enan tiomers of each other... [Pg.1029]

Hemiacetal formation between the carbonyl group and the C 4 hydroxyl yields the five membered furanose ring form The anomenc carbon is a new chirality center its hydroxyl group can be either cis or trans to the other hydroxyl groups of the molecule... [Pg.1033]

Cyclodextrins are macrocyclic compounds comprised of D-glucose bonded through 1,4-a-linkages and produced enzymatically from starch. The greek letter which proceeds the name indicates the number of glucose units incorporated in the CD (eg, a = 6, /5 = 7, 7 = 8, etc). Cyclodextrins are toroidal shaped molecules with a relatively hydrophobic internal cavity (Fig. 6). The exterior is relatively hydrophilic because of the presence of the primary and secondary hydroxyls. The primary C-6 hydroxyls are free to rotate and can partially block the CD cavity from one end. The mouth of the opposite end of the CD cavity is encircled by the C-2 and C-3 secondary hydroxyls. The restricted conformational freedom and orientation of these secondary hydroxyls is thought to be responsible for the chiral recognition inherent in these molecules (77). [Pg.64]

This chemical bond between the metal and the hydroxyl group of ahyl alcohol has an important effect on stereoselectivity. Asymmetric epoxidation is weU-known. The most stereoselective catalyst is Ti(OR) which is one of the early transition metal compounds and has no 0x0 group (28). Epoxidation of isopropylvinylcarbinol [4798-45-2] (1-isopropylaHyl alcohol) using a combined chiral catalyst of Ti(OR)4 and L-(+)-diethyl tartrate and (CH2)3COOH as the oxidant, stops at 50% conversion, and the erythro threo ratio of the product is 97 3. The reason for the reaction stopping at 50% conversion is that only one enantiomer can react and the unreacted enantiomer is recovered in optically pure form (28). [Pg.74]

Because a hexose contains four chiral carbon atoms, there are 2 = 16 different possible arrangements of the hydroxyl groups in space, ie, there are 16 different stereoisomers. The stmctures of half of these, the eight D isomers, are shown in Figure 1. Only three of these 16 stereoisomers are commonly found in nature D-glucose [50-99-7] D-galactose [59-23-4] and D-mannose [3458-28-4]. [Pg.474]

Chiral Alcohols and Lactones. HLAT) has been widely used for stereoselective oxidations of a variety of prochiral diols to lactones on a preparative scale. In most cases pro-(3) hydroxyl is oxidized irrespective of the substituents. The method is apphcable among others to tit-1,2-bis(hydroxymethyl) derivatives of cyclopropane, cyclobutane, cyclohexane, and cyclohexene. Resulting y-lactones are isolated in 68—90% yields and of 100% (164,165). [Pg.347]

Synthetic chiral adsorbents are usually prepared by tethering a chiral molecule to a silica surface. The attachment to the silica is through alkylsiloxy bonds. A study which demonstrates the technique reports the resolution of a number of aromatic compoimds on a 1- to 8-g scale. The adsorbent is a silica that has been derivatized with a chiral reagent. Specifically, hydroxyl groups on the silica surface are covalently boimd to a derivative of f -phenylglycine. A medium-pressure chromatography apparatus is used. The racemic mixture is passed through the column, and, when resolution is successful, the separated enantiomers are isolated as completely resolved fiactions. Scheme 2.5 shows some other examples of chiral stationary phases. [Pg.89]

The structural variations reported by Cram and coworkers relate to an appreciable extent to the various ancillary functions which have been appended to the binaphthyl units or elsewhere in the macrocyclic system. Enhancements of the chiral barrier or functionalization through arms has generally been effected at the 3-or 6-positions. These positions are adjacent to the hydroxyl group or directly across the second ring from it, respectively. [Pg.48]

The reaction of diethyl tartrate with sulfur tetrafluonde at 25 °C results in replacement of one hydroxyl group, whereas at 100 °C, both hydroxyl groups are replaced by fluonne to form a,a -difluorosuccinate [762] The stereochemical outcome of the fluonnation of tartrate esters is retention of configuration at one of the chiral carbon atoms and inversion of configuration at the second chiral center [163,164, 165] Thus, treatment ofdimethyl(+)-L-tartrate with sulfur tetrafluonde gives dimethyl meso-a,a difluorosuccinate as the final product [163, 164], whereas dimethyl meso tartrate is converted into a racemic mixture of D- and L-a,a -difluorosuccmates [765] (equation 80)... [Pg.235]

For the construction of oxygen-functionalized Diels-Alder products, Narasaka and coworkers employed the 3-borylpropenoic acid derivative in place of 3-(3-acet-oxypropenoyl)oxazolidinone, which is a poor dienophile in the chiral titanium-catalyzed reaction (Scheme 1.55, Table 1.24). 3-(3-Borylpropenoyl)oxazolidinones react smoothly with acyclic dienes to give the cycloadducts in high optical purity [43]. The boryl group was converted to an hydroxyl group stereospecifically by oxidation, and the alcohol obtained was used as the key intermediate in a total synthesis of (-i-)-paniculide A [44] (Scheme 1.56). [Pg.36]

The landmark report by Winstein et al. (Scheme 3.6) on the powerful accelerating and directing effect of a proximal hydroxyl group would become one of the most critical in the development of the Simmons-Smith cyclopropanation reactions [11]. A clear syw directing effect is observed, implying coordination of the reagent to the alcohol before methylene transfer. This characteristic served as the basis of subsequent developments for stereocontrolled reactions with many classes of chiral allylic cycloalkenols and indirectly for chiral auxiliaries and catalysts. A full understanding of this phenomenon would not only be informative, but it would have practical applications in the rationalization of asymmetric catalytic reactions. [Pg.100]

The importance of the o-hydroxyl moiety of the 4-benzyl-shielding group of R,R-BOX/o-HOBn-Cu(OTf)2 complex was indicated when enantioselectivities were compared between the following two reactions. Thus, the enantioselectivity observed in the reaction of O-benzylhydroxylamine with l-crotonoyl-3-phenyl-2-imi-dazolidinone catalyzed by this catalyst was 85% ee, while that observed in a similar reaction catalyzed by J ,J -BOX/Bn.Cu(OTf)2 having no hydroxyl moiety was much lower (71% ee). In these reactions, the same mode of chirality was induced (Scheme 7.46). We believe the free hydroxyl groups can weakly coordinate to the copper(II) ion to hinder the free rotation of the benzyl-shielding substituent across the C(4)-CH2 bond. This conformational lock would either make the coordination of acceptor molecules to the metallic center of catalyst easy or increase the efficiency of chiral shielding of the coordinated acceptor molecules. [Pg.289]

The study of biochemical natural products has also been aided through the application of two-dimensional GC. In many studies, it has been observed that volatile organic compounds from plants (for example, in fruits) show species-specific distributions in chiral abundances. Observations have shown that related species produce similar compounds, but at differing ratios, and the study of such distributions yields information on speciation and plant genetics. In particular, the determination of hydroxyl fatty acid adducts produced from bacterial processes has been a successful application. In the reported applications, enantiomeric determination of polyhydroxyl alkanoic acids extracted from intracellular regions has been enabled (45). [Pg.68]


See other pages where Hydroxylation chiral is mentioned: [Pg.108]    [Pg.48]    [Pg.108]    [Pg.48]    [Pg.210]    [Pg.211]    [Pg.285]    [Pg.1027]    [Pg.1061]    [Pg.64]    [Pg.244]    [Pg.353]    [Pg.134]    [Pg.159]    [Pg.96]    [Pg.98]    [Pg.473]    [Pg.475]    [Pg.293]    [Pg.86]    [Pg.27]    [Pg.29]    [Pg.230]    [Pg.285]    [Pg.1027]    [Pg.1030]    [Pg.147]    [Pg.122]    [Pg.123]    [Pg.192]   
See also in sourсe #XX -- [ Pg.175 ]




SEARCH



© 2024 chempedia.info