Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

6-Hydroxy ethers, decomposition

Sodium azide does not react with carbonyl sulfide to form 5-hydroxy-1,2,3,4-thiatriazole, nor with carboxymethyl xanthates, RO-CS SCH2COOH, to form 5-alkoxy-l,2,3,4-thiatriazoles. The latter, however, could be prepared from xanthogenhydrazides (RO-CS NHNH2) and nitrous acid. They are very unstable and may decompose explosively at room temperature only the ethoxy compound (6) has been examined in detail. This is a solid which decomposes rapidly at room temperature and even at 0°C is transformed after some months into a mixture of sulfur and triethyl isocyanurate. In ethereal solution at 20° C the decomposition takes place according to Eq. (16)... [Pg.277]

Alkyl-1,4-dihydropyridines on reaction with peracids undergo either extensive decomposition or biomimetic oxidation to A-alkylpyridinum salts (98JOC10001). However, A-methoxycarbonyl derivatives of 1,4- and 1,2-dihydro-pyridines (74) and (8a) react with m-CPBA to give the methyl tmns-2- 2>-chlorobenzoyloxy)-3-hydroxy-1,2,3,4-tetrahydropyridine-l-carboxylate (75) and methyl rran.s-2-(3-chlorobenzoyloxy)-3-hydroxy-l,2,3,6-tetrahydropyridine-l-carboxylate (76) in 65% and 66% yield, respectively (nonbiomimetic oxidation). The reaction is related to the interaction of peracids with enol ethers and involves the initial formation of an aminoepoxide, which is opened in situ by m-chlorobenzoic acid regio- and stereoselectively (57JA3234, 93JA7593). [Pg.285]

A mixture of 3 gof 8-(2-hydroxy-3-chloropropoxy)-5-methyl coumarin,4.3 g of t-butylamine and 60 ml of ethenol Is heated et 100°C in a sealed tube for 15 hours. The reaction mixture is concentrated under reduced pressure to dryness. The residue Is recrystallized from a mixture of ethanoi and ether to give 2.1 g of the desired product melting at 226° to 228 C (with decomposition). [Pg.193]

A mixture of 31 5 g (0.1 mol) of 2-chloro-9-(3 -dimethylaminopropylidene)-thiaxanthene (MP 97°C) and 100 g of N-( 3-hydroxyethyl)-piperazine is heated to 130°C and boiled under reflux at this temperature for 48 hours. After cooling, the excess of N-( 3-hydroxyethyl)-piperazine Is evaporated in vacuo, and the residue is dissolved in ether. The ether phase is washed with water and extracted with dilute acetic acid, and 2-chloro-9-[3 -N-(N - -hydroxy-ethyD-piperazinylpropylidene] -thiaxanthene separated from the aqueous acetic acid solution by addition of dilute sodium hydroxide solution to basic reaction. The free base is extracted with ether, the ether phase dried over potassium carbonate, the ether evaporated and the residue dissolved in absolute ethanol. By complete neutralization of the ethanolic solution with a solution of dry hydrogen chloride in absolute ethanol, the dihydrochloride of 2-chloro-9-[3 -N-(N -(3-hydroxyethyl)-piperazinylpropylidene] -thiaxanthene is produced and crystallizes out as a white substance melting at about 250°C to 260°C with decomposition. The yield is 32 g. [Pg.374]

Preparation of 2-Hydroxy-4,4 -Diamidinostilbene Dihydrochloride 10 grams of 2-hydroxy-4,4 -dicyanostilbene were suspended in 250 cc of absolute ethyl alcohol and the mixture saturated with dry hydrogen chloride at 0°C. The whole was left for eight days at room temperature. The imino-ether hydrochloride formed was filtered off, washed with dry ether and dried in the air for a short time. It was then added to 250 cc of 10% ethyl alcoholic ammonia and the whole heated for 5 hours at 45°C. The 2-hydroxy-4,4 -diamidino-stilbene dihydrochloride which separated was crystallized from 10% hydrochloric acid. It forms pale yellow needles, MP 357°C (decomposition). [Pg.790]

The dl-a-methYl-3,4-dihYdroxYphenylalanine may be made as described in U.S. Patent 2,868,818. Five-tenths of a gram of 3-hYdroxY-4-methoxYphenylalanine was dissolved in 20 ml of concentrated hydrochloric acid, the solution saturated with hydrogen chloride and heated in a sealed tube at 150°C for 2 hours. The dark reaction mixture was concentrated to dryness in vacuo, excess acid removed by flushing several times with ethanol. On dissolving the dark residue in a minimum amount of water and adjusting the clarified solution to pH 6.5 with ammonium hydroxide the compound separated in fine crystals which were filtered, washed with alcohoi and ether. The crystalline product had a MP of 299.5° to 300°C with decomposition. [Pg.993]

HAZARDOUS DECOMPOSITION PRODUCTS T will hydrolyze to form HC1 and di-2-(2-hydroxy ethyl thio) ethyl ether. [Pg.460]

Preparative photolysis of AETSAPPE (0.25 M aqueous solution) at 254 nm (Rayonet reactor) resulted in the formation of the disulfide product 2-amino(2-hydroxy-3-(phenyl ether) propyl) ether disulfide (AHPEPED) as the primary photoproduct Photolysis of AETSAPPE at 254 nm (isolated line of medium pressure mercury lamp) resulted in rapid initial loss of starting material accompanied by formation (analyzed by HPLC) of AHPEPED (Figure 12a and 12b) (Scheme IV). Similar results were obtained for photolysis- at 280 nm. Quantum yields for disappearance of AETSAPPE and formation of AHPEPED at 254 nm and 280 nm are given in Table I. The photolytic decomposition of AETSAPPE in water was also accomplished by sensitization ( x =366 nm) with (4-benzoylbenzyl) trimethylammonium chloride (BTC), a water soluble benzophenone type triplet sensitizer. The quantum yield for the sensitized disappearance (Table I) is comparable to the results for direct photolysis (unfortunately, due to experimental complications we did not measure the quantum yield for AHPEPED formation). These results indicate that direct photolysis of AETSAPPE probably proceeds from a triplet state. [Pg.296]

In comparison to other vinylic compounds , the vinyl proton in 1-alkenyl carbamates, deprotonation has a very high kinetic acidity . After protection of the 4-hydroxy group in the homoaldol products by silylation, deprotonation (w-BuLi, TMEDA, diethyl ether or THF) of enol carbamate 384 is complete at —78 °C (equation 103), and the resulting vinyUithium 385 can be kept at this temperature without decomposition for several hours. Stannylation , silylation , methoxycarbonylation (with methyl chloroformate) ... [Pg.1132]

In general, dehydration means loss of water molecules from chemical substances, irrespective of their structure. Even if all cases where water is bonded in hydrate form are excluded, a number of reactions remain which also include formation of nitriles from amides, lactones from hydroxy acids etc. However, the present treatment will concentrate on the heterogeneous catalytic decomposition of alcohols in the vapour phase, which can be either olefin-forming or ether-forming reactions, and on the related dehydration of ethers to olefins. [Pg.281]

Sulfasalazine. Salicylazosulfapyridine or Azulfadine [599-79-1] (2-hydroxy-5-[[4[(2-pyridylamino)sulfonyl]-phenyl]azo] benzoic acid) (15) is a light brownish yellow-to-bright yellow fine powder that is practically tasteless and odorless. It melts at ca 255°C with decomposition, is very slightly soluble in ethanol, is practically insoluble in water, diethyl ether, chloroform, and benzene, and is soluble in aqueous solutions of alkali hydroxides. Sulfasalazine may be made by the synthesis described in Reference 13. It is not used as an antidiarrheal as such, but is indicated for the treatment of inflammatory bowel diseases such as ulcerative colitis and Crohn s disease. Its action is purported to result from the breakdown in the colon to 5-aminosalicylic acid [89-57-6] (5-AS A) and sulfapyridine [144-83-2]. It may cause infertility in males, as well as producing idiosyncratic reactions in some patients these reactions have been attributed to the sulfa component of the compound. The mechanism of 5-ASA is attributed to inhibition of the arachidonic acid cascade preventing leukotriene B4 production and the ability to scavenge oxygen free radicals. The active component appears to be 5-aminosalicylic acid. [Pg.203]

The ability of non-C2 symmetric ketones to promote a highly enantioselective dioxirane-mediated epoxidation was first effectively demonstrated by Shi in 1996 [114]. The fructose-derived ketone 44 was discovered to be particularly effective for the epoxidation of frans-olefins (Scheme 17 ). frans-Stilbene, for instance, was epoxidized in 95% ee using stoichiometric amounts of ketone 44, and even more impressive was the epoxidation of dialkyl-substituted substrates. This method was rendered catalytic (30 mol %) upon the discovery of a dramatic pH effect, whereby higher pH led to improved substrate conversion [115]. Higher pH was proposed to suppress decomposition pathways for ketone 44 while simultaneously increasing the nucleophilicity of Oxone. Shi s ketone system has recently been applied to the AE of enol esters and silyl enol ethers to provide access to enantio-enriched enol ester epoxides and a-hydroxy ketones [116]. Another recent improvement of Shi s fructose-derived epoxidation reaction is the development of inexpensive synthetic routes to access both enantiomers of this very promising ketone catalyst [117]. [Pg.644]


See other pages where 6-Hydroxy ethers, decomposition is mentioned: [Pg.243]    [Pg.203]    [Pg.65]    [Pg.212]    [Pg.203]    [Pg.255]    [Pg.351]    [Pg.343]    [Pg.161]    [Pg.72]    [Pg.132]    [Pg.643]    [Pg.57]    [Pg.724]    [Pg.57]    [Pg.672]    [Pg.369]    [Pg.237]    [Pg.721]    [Pg.776]    [Pg.1332]    [Pg.3434]    [Pg.82]    [Pg.1265]    [Pg.407]    [Pg.194]    [Pg.65]    [Pg.1531]    [Pg.293]    [Pg.614]    [Pg.1086]    [Pg.1645]    [Pg.73]    [Pg.450]   
See also in sourсe #XX -- [ Pg.294 ]




SEARCH



6-Hydroxy ethers, decomposition preparation

Hydroxy ethers

© 2024 chempedia.info