Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydroxy-, derivatives reaction with Lewis acids

Addition to a-hydroxy aldehydes.1 The Lewis acid-catalyzed addition of 1 to aldehydes to afford homoallylic alcohols (9, 8) has been extended to the reaction with derivatives of a chiral a-hydroxy aldehyde (2), which can result in the monoderivative of a syn-diol (3) and/or an anti-diol (4). The diastereoselectivity can be controlled by the... [Pg.21]

Hydroxy-L-prolin is converted into a 2-methoxypyrrolidine. This can be used as a valuable chiral building block to prepare optically active 2-substituted pyrrolidines (2-allyl, 2-cyano, 2-phosphono) with different nucleophiles and employing TiQ as Lewis acid (Eq. 21) [286]. Using these latent A -acylimmonium cations (Eq. 22) [287] (Table 9, No. 31), 2-(pyrimidin-l-yl)-2-amino acids [288], and 5-fluorouracil derivatives [289] have been prepared. For the synthesis of p-lactams a 4-acetoxyazetidinone, prepared by non-Kolbe electrolysis of the corresponding 4-carboxy derivative (Eq. 23) [290], proved to be a valuable intermediate. 0-Benzoylated a-hydroxyacetic acids are decarboxylated in methanol to mixed acylals [291]. By reaction of the intermediate cation, with the carboxylic acid used as precursor, esters are obtained in acetonitrile (Eq. 24) [292] and surprisingly also in methanol as solvent (Table 9, No. 32). Hydroxy compounds are formed by decarboxylation in water or in dimethyl sulfoxide (Table 9, Nos. 34, 35). [Pg.124]

Enantioselective D-A reactions of acrolein are also catalyzed by 3-(2-hydroxyphenyl) derivatives of BINOL in the presence of an aromatic boronic acid. The optimum boronic acid is 3,5-di-(trifluoromethyl)benzeneboronic acid, with which more than 95% e.e. can be achieved. The TS is believed to involve Lewis acid complexation of the boronic acid at the carbonyl oxygen and hydrogen bonding with the hydroxy substituent. In this TS tt-tt interactions between the dienophile and the hydroxybiphenyl substituent can also help to align the dienophile.114... [Pg.511]

In the next step of the sequence, the authors sought to introduce a hydroxy-methylene substituent at the unsubstituted 7-position of the enone. This bond construction can be carried out by conducting a Baylis-Hillman reaction with formaldehyde. In this instance, the authors used a modification of the Baylis-Hillman reaction which involves the use of a Lewis acid to activate the enone [26]. Under these conditions, the enone 42 is treated with excess paraformaldehyde in the presence of triethylphosphine (1 equiv), lanthanum triflate (5 mol%), and triethanolamine (50 mol%). It is proposed that the lanthanum triflate forms a complex with the triethanolamine. This complex is able to activate the enone toward 1,4-addition of the nucleophilic catalysts (here, triethylphosphine). In the absence of triethanolamine, the Lewis acid catalyst undergoes nonproductive complexation with the nucleophilic catalyst, leading to diminution of catalysis. Under these conditions, the hydroxymethylene derivative 37 was formed in 70 % yield. In the next step of the sequence, the authors sought to conduct a stereoselective epoxidation of the allylic... [Pg.47]

Annual Volume 71 contains 30 checked and edited experimental procedures that illustrate important new synthetic methods or describe the preparation of particularly useful chemicals. This compilation begins with procedures exemplifying three important methods for preparing enantiomerically pure substances by asymmetric catalysis. The preparation of (R)-(-)-METHYL 3-HYDROXYBUTANOATE details the convenient preparation of a BINAP-ruthenium catalyst that is broadly useful for the asymmetric reduction of p-ketoesters. Catalysis of the carbonyl ene reaction by a chiral Lewis acid, in this case a binapthol-derived titanium catalyst, is illustrated in the preparation of METHYL (2R)-2-HYDROXY-4-PHENYL-4-PENTENOATE. The enantiomerically pure diamines, (1 R,2R)-(+)- AND (1S,2S)-(-)-1,2-DIPHENYL-1,2-ETHYLENEDIAMINE, are useful for a variety of asymmetric transformations hydrogenations, Michael additions, osmylations, epoxidations, allylations, aldol condensations and Diels-Alder reactions. Promotion of the Diels-Alder reaction with a diaminoalane derived from the (S,S)-diamine is demonstrated in the synthesis of (1S,endo)-3-(BICYCLO[2.2.1]HEPT-5-EN-2-YLCARBONYL)-2-OXAZOLIDINONE. [Pg.266]

However, most asymmetric 1,3-dipolar cycloaddition reactions of nitrile oxides with alkenes are carried out without Lewis acids as catalysts using either chiral alkenes or chiral auxiliary compounds (with achiral alkenes). Diverse chiral alkenes are in use, such as camphor-derived chiral N-acryloylhydrazide (195), C2-symmetric l,3-diacryloyl-2,2-dimethyl-4,5-diphenylimidazolidine, chiral 3-acryloyl-2,2-dimethyl-4-phenyloxazolidine (196, 197), sugar-based ethenyl ethers (198), acrylic esters (199, 200), C-bonded vinyl-substituted sugar (201), chirally modified vinylboronic ester derived from D-( + )-mannitol (202), (l/ )-menthyl vinyl ether (203), chiral derivatives of vinylacetic acid (204), ( )-l-ethoxy-3-fluoroalkyl-3-hydroxy-4-(4-methylphenylsulfinyl)but-1 -enes (205), enantiopure Y-oxygenated-a,P-unsaturated phenyl sulfones (206), chiral (a-oxyallyl)silanes (207), and (S )-but-3-ene-1,2-diol derivatives (208). As a chiral auxiliary, diisopropyl (i ,i )-tartrate (209, 210) has been very popular. [Pg.25]

Chiral acetals/ketals derived from either (R,R)- or (5,5 )-pentanediol have been shown to offer considerable advantages in the synthesis of secondary alcohols with high enantiomeric purity. The reaction of these acetals with a wide variety of carbon nucleophiles in the presence of a Lewis acid results in a highly diastereoselective cleavage of the acetal C-0 bond to give a /1-hydroxy ether, and the desired alcohols can then be obtained by subsequent degradation through simple oxidation elimination. Scheme 2-39 is an example in which H is used as a nucleophile.97... [Pg.105]

Fluoral hydrate and hemiacetals are industrial products. They are stable liquids that are easy to handle, and they react as fluoral itself in many reactions. Thus, in the presence of Lewis acids, they react in Friedel-Crafts reactions. They also react very well with organometallics (indium and zinc derivatives) and with silyl enol ethers.Proline-catalyzed direct asymmetric aldol reaction of fluoral ethyl hemiac-etal with ketones produced jS-hydroxy-jS-trifluoromethylated ketones with good to excellent diastereo- (up to 96% de) and enantioselectivities. With imine reagents, the reaction proceeds without Lewis acid activation. The use of chiral imines affords the corresponding 8-hydroxy ketones with a 60-80% de (Figure 2.49). ° ... [Pg.53]

This chapter deals mainly with the 1,3-dipolar cycloaddition reactions of three 1,3-dipoles azomethine ylides, nitrile oxides, and nitrones. These three have been relatively well investigated, and examples of external reagent-mediated stereocontrolled cycloadditions of other 1,3-dipoles are quite limited. Both nitrile oxides and nitrones are 1,3-dipoles whose cycloaddition reactions with alkene dipolarophiles produce 2-isoxazolines and isoxazolidines, their dihydro derivatives. These two heterocycles have long been used as intermediates in a variety of synthetic applications because their rich functionality. When subjected to reductive cleavage of the N—O bonds of these heterocycles, for example, important building blocks such as p-hydroxy ketones (aldols), a,p-unsaturated ketones, y-amino alcohols, and so on are produced (7-12). Stereocontrolled and/or enantiocontrolled cycloadditions of nitrones are the most widely developed (6,13). Examples of enantioselective Lewis acid catalyzed 1,3-dipolar cycloadditions are summarized by J0rgensen in Chapter 12 of this book, and will not be discussed further here. [Pg.757]

Epoxycarboxylic acid derivatives react with azide to yield mainly 2-hydroxy-3-azidoalkanoic acid derivatives [367, 368] (Scheme4.85). Addition of Lewis acids to the reaction mixture enhances this selectivity further and renders this reaction a valuable strategy for stereoselective preparation of -hydroxy-/l-amino acids from allyl alcohols [368] (last example, Scheme4.85). [Pg.118]

C—C—O+N—C. a-Hydroxy ketones react with monosubstituted cyanamides under the influence of sodium hydroxide to yield derivatives of 2-aminooxazole (equation 125) (76S591). Oxazoles are obtained by the action of nitriles on a-diazo carbonyl compounds in the presence of Lewis acids, such as aluminum chloride or boron trifluoride, and the reaction is thought to involve the intermediacy of nitrilium salts (equation 126). Nitrilium salts are also the effective agents in the formation of oxazoles from a-chloro ketones and nitriles in the presence of tin(IV) chloride (equation 127). [Pg.222]

In the case of nonsymmetrical epoxides, the regioselectivity is determined by the particular reaction conditions. Thus, styrene oxide (6) undergoes methanolysis in the presence of the Lewis acid catalyst copper(II) tetrafluoroborate to give the hydroxy ether 60, derived from attack of the nucleophile at the more substituted oxiranyl carbon. Similar outcomes have been observed in the solvolysis of 6 with the assistance of aminopropyl silica gel (APSG) supported iodine in catalytic quantities <02SL1251>. This selectivity appears to be much less decisive, however, in the case of monoalkyl epoxides, as illustrated in the corresponding reaction of 1-octene oxide (61), which yields an almost 1 1-mixture of isomers under the same conditions <02OL2817>. [Pg.83]

The reaction of -halo carbonyl compounds with primary amides is appropriate for oxazoles containing one or more aryl groups . Ureas form 2-aminooxazoles. Formamide can be used resulting in a free 2-position in the oxazole. A convenient synthesis of 5-substituted-4-cyanooxazoles 223 is based on the condensation of -hydroxy—cyanoenamines 222 with trimethyl orthoformate (Scheme 109). The cyanoenamine intermediates 222 are derived from Lewis acid-catalyzed Passerini reactions between /-butyl isonitrile and aldehydes <2002S1969>. [Pg.736]


See other pages where Hydroxy-, derivatives reaction with Lewis acids is mentioned: [Pg.115]    [Pg.748]    [Pg.106]    [Pg.249]    [Pg.357]    [Pg.304]    [Pg.139]    [Pg.76]    [Pg.314]    [Pg.327]    [Pg.269]    [Pg.97]    [Pg.183]    [Pg.243]    [Pg.192]    [Pg.69]    [Pg.103]    [Pg.107]    [Pg.164]    [Pg.154]    [Pg.301]    [Pg.728]    [Pg.262]    [Pg.107]    [Pg.16]    [Pg.107]    [Pg.13]    [Pg.130]    [Pg.141]    [Pg.363]    [Pg.341]    [Pg.250]    [Pg.291]    [Pg.390]    [Pg.198]   
See also in sourсe #XX -- [ Pg.388 ]




SEARCH



Acids, hydroxy, reaction with

Hydroxy acids Reactions

Hydroxy reaction

Hydroxy-, derivatives

Lewis acids derivatives

Lewis acids reaction with

Lewis reactions

With Lewis Acids

© 2024 chempedia.info