Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrophile numbers

Clearly, it is important that there be a large contact angle at the solid particle-solution-air interface. Some minerals, such as graphite and sulfur, are naturally hydrophobic, but even with these it has been advantageous to add materials to the system that will adsorb to give a hydrophobic film on the solid surface. (Effects can be complicated—sulfur notability oscillates with the number of preadsoibed monolayers of hydrocarbons such as n-heptane [76].) The use of surface modifiers or collectors is, of course, essential in the case of naturally hydrophilic minerals such as silica. [Pg.476]

The sequence space of proteins is extremely dense. The number of possible protein sequences is 20. It is clear that even by the fastest combinatorial procedure only a very small fraction of such sequences could have been synthesized. Of course, not all of these sequences will encode protein stmctures which for functional purjDoses are constrained to have certain characteristics. A natural question that arises is how do viable protein stmctures emerge from the vast sea of sequence space The two physical features of folded stmctures are (l)in general native proteins are compact but not maximally so. (2) The dense interior of proteins is largely made up of hydrophobic residues and the hydrophilic residues are better accommodated on the surface. These characteristics give the folded stmctures a lower free energy in comparison to all other confonnations. [Pg.2646]

An important step in tire progress of colloid science was tire development of monodisperse polymer latex suspensions in tire 1950s. These are prepared by emulsion polymerization, which is nowadays also carried out industrially on a large scale for many different polymers. Perhaps tire best-studied colloidal model system is tliat of polystyrene (PS) latex [9]. This is prepared with a hydrophilic group (such as sulphate) at tire end of each molecule. In water tliis produces well defined spheres witli a number of end groups at tire surface, which (partly) ionize to... [Pg.2669]

Cyclodextrins are macrocyclic compounds comprised of D-glucose bonded through 1,4-a-linkages and produced enzymatically from starch. The greek letter which proceeds the name indicates the number of glucose units incorporated in the CD (eg, a = 6, /5 = 7, 7 = 8, etc). Cyclodextrins are toroidal shaped molecules with a relatively hydrophobic internal cavity (Fig. 6). The exterior is relatively hydrophilic because of the presence of the primary and secondary hydroxyls. The primary C-6 hydroxyls are free to rotate and can partially block the CD cavity from one end. The mouth of the opposite end of the CD cavity is encircled by the C-2 and C-3 secondary hydroxyls. The restricted conformational freedom and orientation of these secondary hydroxyls is thought to be responsible for the chiral recognition inherent in these molecules (77). [Pg.64]

The Smith-Ewart expression (eq. 1) accurately predicts the particle number for hydrophobic monomers like styrene and butadiene (21), but fails to predict the particle number (22) for more hydrophilic monomers like methyl methacrylate and vinyl acetate. A new theory based on homogeneous particle... [Pg.23]

Simplified models for proteins are being used to predict their stmcture and the folding process. One is the lattice model where proteins are represented as self-avoiding flexible chains on lattices, and the lattice sites are occupied by the different residues (29). When only hydrophobic interactions are considered and the residues are either hydrophobic or hydrophilic, simulations have shown that, as in proteins, the stmctures with optimum energy are compact and few in number. An additional component, hydrogen bonding, has to be invoked to obtain stmctures similar to the secondary stmctures observed in nature (30). [Pg.215]

A number of after-treatments with polyester copolymers carried out after sodium hydroxide processing are reported to produce a more hydrophilic polyester fabric (197). Likewise, the addition of a modified cellulose ether has improved water absorbency (198). Other treatments used on cotton and blends are also effective on 100% polyester fabrics (166—169). In this case, polymeri2ation is used between an agent such as DMDHEU and a polyol to produce a hydrophilic network in the synthetic matrix (166—169). [Pg.449]

Synthetic fabrics can also be finished to achieve a number of specific characteristics (199). For example, increased electrical conductivity can improve the antistatic character of polyester. Similarly, finishes that improve hydrophilic character also improve properties related to soil release and soil redeposition (199,200). [Pg.449]

LB Films of Polymeric Amphiphile. Since the first successful deposition of a polymeric LB film (61), there have been a large number of studies examining different stmctural parameters on the transferabiHty and stabiHty of the polymeric LB films (4). One interesting idea for polymers for LB films is the use of a spacer group (mosdy hydrophilic) to decouple the motion of the polymer from that of the Hpid membrane (62,63). Monolayers from a poljmier (10) having hydrophilic phosphate groups and a tetraethylene oxide spacer were used to link a glycerol diether to the polymer chain (63). [Pg.535]

Because of the many choices of hydrophilic monomers, cross-linkers, and hydrophobic monomers, a large number of formulations have been developed and manufactured into hydrogel lenses. The water content of these hydrogel lenses ranges from about 38%, for HEMA-based lenses, to 80%, for poly(vinyl alcohol) and partially hydrolysed acrylonitrile lenses. Table 2 gives a representative Hst of FDA approved hydrogel materials available to the consumer in the early 1990s. [Pg.104]

The hydrophile—hpophile balance (HLB) is an empirical system based on the fact that oil—water (o/w) emulsions are best stabilized by water-soluble-emulsifiers and water—oil (w/o) emulsions are best stabilized by oil-soluble ones (3). The HLB scale mns from 0—20 and is based on the ratio of the saponification number of ester, A, to the acid number of recovered acid, where HLB = 20 1-Sj A). The dispersibiUty of an emulsifier in water is related to HLB value. [Pg.439]

Hydrophobic fibers are difficult to dye with ionic (hydrophilic) dyes. The dyes prefer to remain in the dyebath where they have a lower chemical potential. Therefore nonionic, hydrophobic dyes are used for these fibers. The exceptions to the rule are polyamide and modified polyacrylonitriles and modified polyester where the presence of a limited number of ionic groups in the polymer, or at the end of polymer chains, makes these fibers capable of being dyed by water-soluble dyes. [Pg.350]

Langmuir isotherms are typically found with ionic synthetic fibers and ionic dyes, eg, dyeing polyacrylonitrile with modified basic dyes, and on hydrophilic fibers in situations when the number of sites becomes very low. This may arise when the internal pH is such that only a small number of sites ionise. [Pg.352]


See other pages where Hydrophile numbers is mentioned: [Pg.67]    [Pg.67]    [Pg.513]    [Pg.1739]    [Pg.1740]    [Pg.2377]    [Pg.2582]    [Pg.2591]    [Pg.2614]    [Pg.136]    [Pg.404]    [Pg.535]    [Pg.562]    [Pg.56]    [Pg.56]    [Pg.449]    [Pg.528]    [Pg.24]    [Pg.324]    [Pg.202]    [Pg.210]    [Pg.210]    [Pg.151]    [Pg.48]    [Pg.224]    [Pg.462]    [Pg.96]    [Pg.530]    [Pg.25]    [Pg.132]    [Pg.149]    [Pg.365]    [Pg.359]    [Pg.286]    [Pg.101]    [Pg.562]    [Pg.336]    [Pg.14]    [Pg.223]   
See also in sourсe #XX -- [ Pg.613 ]




SEARCH



Hydrophile group numbers

Hydrophile-lipophile balance group numbers

Hydrophilic-lipophilic balance number

© 2024 chempedia.info