Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydroperoxides analysis

Reviews appeared on the following subjects Analysis of lipid hydroperoxides , the difficulties encountered for hydroperoxide analysis in a plasma matrix , post-column derivatization after GLC of lipid hydroperoxides and methods for detection and characterization of hydroperoxy groups in oxidized polyolefins . [Pg.673]

One of the obvious features of the oxidation of polypropylene is the formation of hydroperoxides (reaction (3) in Scheme 1.55) as a product. The initiation of the oxidation sequence is usually considered to be thermolysis of hydroperoxides formed during synthesis and processing (shown as the bimolecular reaction (1 ) in Scheme 1.55). The kinetics of oxidation in the melt then become those of a branched chain reaction as the number of free radicals in the system continually increases with time (ie the product of the oxidation is also an initiator). Because of the different stabilities of the hydroperoxides (e.g. p-, s- and t- isolated or associated) under the conditions of the oxidation, only a fraction of those formed will be measured in any hydroperoxide analysis of the oxidizing polymer. The kinetic character of the oxidation will change from a linear chain reaction, in which the steady-state approximation applies, to a branched-chain reaction, for which the approximation might not be valid since the rate of formation of free radicals is not... [Pg.143]

An HPLC fluorescence method for quantitative and qualitative hydroperoxide analysis was improved, so as to determine linear hydroperoxides and hydroxy hydroperoxides up to a chainlength of seven carbon atoms. [Pg.106]

The influence of light exposure on the photooxidative stability of aqueous acrylic-based latices was examined using FTIR and hydroperoxide analysis. The nature of impurities and oxidation products generated during manufacture of PMM A and polybutyl acrylate latices were characterised and inter-related to their influences on subsequent photooxidative degradation. 20 refs. [Pg.109]

Instrumental methods of peroxide analysis feature polarography, which is used to detn hydroperoxides, peroxyesters and diacyl peroxides as well as dicyclohexyl peroxydicarbonate in polystyrene. Other techniques include infrared (800 to 900cm 1) chemiluminescent analysis for kinetic studies, and chromatography for the identification and separation of peroxides in complex mixts (Refs 5,6, 7,14,15,16,17, 20 21)... [Pg.681]

Chan, H.W.S. and Levett, G. (1977). Autoxidation of methyl linoleate. Separation and analysis of isomeric mixtures of methyl linoleate hydroperoxides and methyl hydrox-ylinoleates. Lipids 12, 99. [Pg.19]

A recent stndy (13,27) describes the use of Co-Si-TUD-1 for the liquid-phase oxidation of cyclohexane. Several other metals were tested as well. TBHP (tert-butyl hydroperoxide) was used as an oxidant and the reactions were carried out at 70°C. Oxidation of cyclohexane was carried out using 20 ml of a mixture of cyclohexane, 35mol% TBHP and 1 g of chlorobenzene as internal standard, in combination with the catalyst (0.1 mmol of active metal pretreated overnight at 180°C). Identification of the products was carried out using GC-MS. The concentration of carboxylic side products was determined by GC analysis from separate samples after conversion into the respective methyl esters. Evolution and consumption of molecular oxygen was monitored volumetrically with an attached gas burette. All mass balances were 92% or better. [Pg.374]

The water (moisture) content can rapidly and accurately be determined in polymers such as PBT, PA6, PA4.6 and PC via coulometric titration, with detection limits of some 20 ppm. Water produced during heating of PET was determined by Karl Fischer titration [536]. The method can be used for determining very small quantities of water (10p,g-15mg). Certified water standards are available. Karl Fischer titrations are not universal. The method is not applicable in the presence of H2S, mercaptans, sulfides or appreciable amounts of hydroperoxides, and to any compound or mixture which partially reacts under the conditions of the test, to produce water [31]. Compounds that consume or release iodine under the analysis conditions interfere with the determination. [Pg.674]

Interestingly, one-electron oxidants partly mimic the effects of OH radicals in their oxidizing reactions with the thymine moiety of nucleosides and DNA. In fact, the main reaction of OH radicals with 1 is addition at C-5 that yields reducing radicals in about 60% yield [34, 38]. The yield of OH radical addition at C-6 is 35% for thymidine (1) whereas the yield of hydrogen abstraction on the methyl group that leads to the formation of 5-methyl-(2 -de-oxyuridylyl) radical (9) is a minor process (5%). Thus, the two major differences in terms of product analysis between the oxidation of dThd by one-electron oxidants and that by the OH radical are the distribution of thymidine 5-hydroxy-6-hydroperoxide diastereomers and the overall percentage of methyl oxidation products. [Pg.16]

Lophine emits yellow CL upon oxidation by molecular oxygen in alkaline solution. The oxidation is believed to produce a free radical [3], which is further oxidized to a hydroperoxide, which is the light-emitting species [4-6], A number of chemiluminescent derivatives of lophine have been synthesized and have been shown to exhibit varying efficiencies of CL. Lophine has been used in the analysis of metal ions such as Co2+ that catalyze the chemiluminescent reaction between it and hydrogen peroxide [7], It has also been used as a chemiluminescent indicator in titrimetry [8],... [Pg.106]

Liquid and paper chromatographies as well as mass spectrometry (MS) are used for the identification and analysis of hydroperoxides [60]. Nuclear magnetic resonance (NMR) spectroscopy is used for identification of diacyl peroxides. [Pg.175]

The structure of hydroperoxides was studied by the x-ray structural analysis method. The results of the experimental measurements are collected in Table 4.6. [Pg.175]

The analysis of the IR spectrum of hydrogen peroxide and cumyl hydroperoxide gave the following values of frequencies (cm-1) of valence and bond angle vibrations [60]. [Pg.175]

The mechanism of H02 formation from peroxyl radicals of primary and secondary amines is clear (see the kinetic scheme). The problem of H02 formation in oxidized tertiary amines is not yet solved. The analysis of peroxides formed during amine oxidation using catalase, Ti(TV) and by water extraction gave controversial results [17], The formed hydroperoxide appeared to be labile and is hydrolyzed with H202 formation. The analysis of hydroperoxides formed in co-oxidation of cumene and 2-propaneamine, 7V-bis(ethyl methyl) showed the formation of two peroxides, namely H202 and (Me2CH)2NC(OOH)Me2 [16]. There is no doubt that the two peroxyl radicals are acting H02 and a-aminoalkylperoxyl. The difficulty is to find experimentally the real proportion between them in oxidized amine and to clarify the way of hydroperoxyl radical formation. [Pg.359]

The reactions of sulfides with ROOH give rise to products that catalyze the decomposition of hydroperoxides [31,38-47]. The decomposition is acid-catalyzed, as can be seen from the analysis of the resulting products cumyl hydroperoxide gives rise to phenol and acetone, while 1,1-dimethylethyl hydroperoxide gives rise to 1,1-dimethylethyl peroxide, where all the three are the products of acid-catalyzed decomposition [46-49]. It is generally accepted that the intermediate catalyst is sulfur dioxide, which reacts with ROOH as an acid [31,46-50]. [Pg.602]

A closer examination by ex situ analysis using NMR or gas chromatography illustrates that intrazeolite reaction mixtures can get complex. For example photooxygenation of 1-pentene leads to three major carbonyl products plus a mixture of saturated aldehydes (valeraldehyde, propionaldehyde, butyraldehyde, acetaldehyde)38 (Fig. 33). Ethyl vinyl ketone and 2-pentenal arise from addition of the hydroperoxy radical to the two different ends of the allylic radical (Fig. 33). The ketone, /i-3-penten-2-one, is formed by intrazeolite isomerization of 1-pentene followed by CT mediated photooxygenation of the 2-pentene isomer. Dioxetane cleavage, epoxide rearrangement, or presumably even Floch cleavage130,131 of the allylic hydroperoxides can lead to the mixture of saturated aldehydes. [Pg.257]

Poly(hydrosilane)s are stable compounds and can be manipulated in the air only for a short period since they are oxygen sensitive. In order to study the oxidation products, a xylene solution of poly(phenylhydrosilane)(Mw = 2340, Mw/Mn = 1.72) was refluxed (140 °C) for 12 h in a system exposed to the air [15]. Only minor changes were observed by GPC analysis whereas FTIR showed characteristic absorptions due to siloxane-type structures on the polymer backbone. A detailed NMR analysis, based on H NMR, Si INEPT and H- Si HMQC spectroscopies, indicated that the oxidized material contains the units 7-10 shown in Scheme 8.2. In particular, units 7,8 and 9+10 were present in relative percentages of 27%, 54% and 19%, respectively, which mean that more than 70% of the catenated silicons were altered. It has also been reported that silyl hydroperoxides and peroxides are not found as products in the autoxidation of poly(phenylhy-drosilane) [16]. [Pg.189]

On one hand, systematic analysis of the reaction medium liquid phase by H and C NMR in the presence of a standard has shown that siloxy (-OSiMe3, -OSiEts) Hgands are easily displaced from the metallic centers and leach during the reaction. Their de-coordination by exchange with the alkyl hydroperoxide is irreversible because they form condensation products such as R3SiOSiR3 and R3SiOO Bu with... [Pg.114]


See other pages where Hydroperoxides analysis is mentioned: [Pg.405]    [Pg.105]    [Pg.36]    [Pg.186]    [Pg.405]    [Pg.105]    [Pg.36]    [Pg.186]    [Pg.204]    [Pg.132]    [Pg.132]    [Pg.839]    [Pg.352]    [Pg.339]    [Pg.250]    [Pg.719]    [Pg.16]    [Pg.1043]    [Pg.397]    [Pg.408]    [Pg.419]    [Pg.113]    [Pg.140]    [Pg.183]    [Pg.164]    [Pg.107]    [Pg.73]    [Pg.45]    [Pg.155]    [Pg.218]    [Pg.234]    [Pg.222]   
See also in sourсe #XX -- [ Pg.103 , Pg.104 , Pg.105 , Pg.106 , Pg.107 , Pg.108 , Pg.119 , Pg.120 , Pg.121 , Pg.122 , Pg.129 , Pg.130 , Pg.131 , Pg.132 , Pg.133 , Pg.134 , Pg.135 , Pg.136 , Pg.137 , Pg.138 , Pg.139 , Pg.140 , Pg.141 , Pg.142 , Pg.143 , Pg.144 , Pg.145 , Pg.174 , Pg.213 , Pg.213 , Pg.214 , Pg.214 , Pg.215 , Pg.215 , Pg.216 , Pg.216 , Pg.217 , Pg.217 , Pg.251 , Pg.252 ]




SEARCH



Analysis of specific lipid hydroperoxides by HPLC

© 2024 chempedia.info