Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrolysis cholesterol formate

Following up this phenomenon of catalysis by an electric charge, Llopis and Davies have recently shown (50a) that the hydrolysis of mono-layers of cholesterol formate (to cholesterol and formic acid) on 0.1 N... [Pg.41]

Fig. 21. (a) Rate constant for the hydrolysis on 0.1 N HCl of a cholesterol formate monolayer (50a). The incorporation into the film of a little long-chain sulfate (C22H46-SOi ) greatly accelerates the reaction. The calculated increases in reaction rate according to the Gouy (33) and Donnan equations are shown (b) For hydrolysis on 0.66 N HCl incorporation of CisH37N(CH3)+ into the film retards reaction because hydrogen ions are repelled from the surface (50a). [Pg.42]

This method of finding the concentration of ions near the surface was applied by Davies (49,21) to the hydrolysis of ionized films of the ester monocetyl succinate. Table IX shows that the rate constant for this hydrolysis, which increased 300% if calculated using bulk concentrations of the catalytic hydroxyl ion, varied by not more than 36% when evaluated using the surface concentrations deduced from (xxv) and (xxvi). Figure 19 shows a similar effect for the addition of neutral salt, the marked catalysis by which is thus demonstrated to be due entirely to electrostatic effects. The acceleration in the rate of hydrolysis of a film cholesterol formate if the surface bears a negative charge can be predicted on the basis of the Donnan equations (xxv) and (xxvi). Values of 5 of 6 A. and 8 A. have been used, the results being compared with experiment in Fig. 21a. The calculated retardation is shown in Fig. 21b. [Pg.44]

The biocatalytic differentiation of enantiotopic nitrile groups in prochiral or meso substrates has been studied by several research groups. For instance, the nitrilase-catalyzed desymmetrization of 3-hydroxyglutaronitrile [92,93] followed by an esterification provided ethyl-(Jl)-4-cyano-3-hydroxybutyrate, a useful intermediate in the synthesis of cholesterol-lowering dmg statins (Figure 6.32) [94,95]. The hydrolysis of prochiral a,a-disubstituted malononitriles by a Rhodococcus strain expressing nitrile hydratase/amidase activity resulted in the formation of (R)-a,a-disubstituted malo-namic acids (Figure 6.33) [96]. [Pg.146]

HDL concentrations vary reciprocally with plasma triacylglycerol concentrations and directly with the activity of lipoprotein lipase. This may be due to surplus surface constituents, eg, phospholipid and apo A-I being released during hydrolysis of chylomicrons and VLDL and contributing toward the formation of preP-HDL and discoidal HDL. HDLj concentrations are inversely related to the incidence of coronary atherosclerosis, possibly because they reflect the efficiency of reverse cholesterol transport. HDL, (HDLj) is found in... [Pg.210]

Extensive studies in vitro from many groups have confirmed that exposure of LDL to a variety of pro-oxidant systems, both cell-free and cell-mediated, results in the formation of lipid hydroperoxides and peroxidation products, fragmentation of apoprotein Bioo, hydrolysis of phospholipids, oxidation of cholesterol and cholesterylesters, formation of oxysterols, preceded by consumption of a-tocopherol and accompanied by consumption of 8-carotene, the minor carotenoids and 7-tocopherol. [Pg.40]

Belkner et al. [32] demonstrated that 15-LOX oxidized preferably LDL cholesterol esters. Even in the presence of free linoleic acid, cholesteryl linoleate continued to be a major LOX substrate. It was also found that the depletion of LDL from a-tocopherol has not prevented the LDL oxidation. This is of a special interest in connection with the role of a-tocopherol in LDL oxidation. As the majority of cholesteryl esters is normally buried in the core of a lipoprotein particle and cannot be directly oxidized by LOX, it has been suggested that LDL oxidation might be initiated by a-tocopheryl radical formed during the oxidation of a-tocopherol [33,34]. Correspondingly, it was concluded that the oxidation of LDL by soybean and recombinant human 15-LOXs may occur by two pathways (a) LDL-free fatty acids are oxidized enzymatically with the formation of a-tocopheryl radical, and (b) the a-tocopheryl-mediated oxidation of cholesteryl esters occurs via a nonenzymatic way. Pro and con proofs related to the prooxidant role of a-tocopherol were considered in Chapter 25 in connection with the study of nonenzymatic lipid oxidation and in Chapter 29 dedicated to antioxidants. It should be stressed that comparison of the possible effects of a-tocopherol and nitric oxide on LDL oxidation does not support importance of a-tocopherol prooxidant activity. It should be mentioned that the above data describing the activity of cholesteryl esters in LDL oxidation are in contradiction with some earlier results. Thus in 1988, Sparrow et al. [35] suggested that the 15-LOX-catalyzed oxidation of LDL is accelerated in the presence of phospholipase A2, i.e., the hydrolysis of cholesterol esters is an important step in LDL oxidation. [Pg.810]

There are a few reported cases of esterases that catalyze not only hydrolysis but also the reverse reaction of ester formation, in analogy with the global reaction described for serine peptidases (Fig. 3.4). Thus, cholesterol esterase can catalyze the esterification of oleic acid with cholesterol and, more importantly in our context, that of fatty acids with haloethanols [54], Esterification and transesterification reactions are also mediated by carboxyleste-rases, as discussed in greater detail in Sect. 7.4. [Pg.77]

Chlorophenyl)glutarate monoethyl ester 87 was reduced to hydroxy acid and subsequently cyclized to afford lactone 88. This was further submitted to reduction with diisobutylaluminium hydride to provide lactol followed by Homer-Emmons reaction, which resulted in the formation of hydroxy ester product 89 in good yield. The alcohol was protected as silyl ether and the double bond in 89 was reduced with magnesium powder in methanol to provide methyl ester 90. The hydrolysis to the acid and condensation of the acid chloride with Evans s chiral auxiliary provided product 91, which was further converted to titanium enolate on reaction with TiCI. This was submitted to enolate-imine condensation in the presence of amine to afford 92. The silylation of the 92 with N, O-bis(trimethylsilyl) acetamide followed by treatment with tetrabutylammonium fluoride resulted in cyclization to form the azetidin-2-one ring and subsequently hydrolysis provided 93. This product was converted to bromide analog, which on treatment with LDA underwent intramolecular cyclization to afford the cholesterol absorption inhibitor spiro-(3-lactam (+)-SCH 54016 94. [Pg.70]

Surface materials from IDL, including some phospholipids, free cholesterol, and apolipoproteins, are transferred to HDL, or form HDL de novo in the circulation. Cholesteryl esters are transferred from HDL to LDL. The net result of the coupled lipolysis and the cholesteryl esters exchange reaction is the replacement of much of the triglyceride core of the original VLDL with cholesteryl esters. IDL undergoes a further hydrolysis in which most of the remaining triglycerides are removed and all apolipoproteins except B-lOO are transferred to other hpoproteins. This process ends with ultimate formation of LDL. [Pg.921]

The initial steps of reverse cholesterol transport involve export of cholesterol from peripheral cells to plasma lipoproteins for subsequent delivery to the liver. In vivo, HDL or its apolipoproteins act as acceptors of cholesterol from peripheral cells, carrying it to the liver for degradation. When cholesterol acceptors such as HDL are present, cholesterol efflux from macrophages is accelerated, which prevents foam cell formation. To produce this efflux, neutral cholesteryl ester hydrolase catalyzes intracellular hydrolysis of cholesteryl esters into free cholesterol in the lysosome (Avart et al. 1999). [Pg.107]

Finally, the enzymatic nature of CPIA-cholesterol ester formation will be briefly mentioned. None of the enzyme preparations of three known biosynthetic pathways for cholesterol esters, namely, acyl-CoA cholesterol Q-acyltransferase (ACAT), lecithin cholesterol 0-acyltransferase (LCAT), nor cholesterol esterase, was effective in producing CPIA-cholesterol ester from the Ba isomer or CPIA. In contrast, the 9,000 g supernatant or microsomal fractions from liver or kidney homogenate were found to be capable of producing CPIA-cholesterol ester without the addition of any cofactors. As substrate, only the Ba isomer was effective, and none of the 3 other fenvalerate isomers nor free CPIA was effective. The hepatic enzyme preparation also catalyzed hydrolysis of fenvalerate, and in this case all the 4 isomers were utilized as substrates. These facts imply that CPIA-cholesterol ester is formed from the Ba isomer through a transesterification reaction via intermediary acyl-enzyme complex. [Pg.278]

The pathways of formation of ketone bodies are shown in Figure 18-9. The major pathway of production of acetoacetate is from j6-hydroxy-j8-methylglutaryl-CoA (HMG-CoA). Hydrolysis of acetoacetyl-CoA to acetoacetate by acetoacetyl-CoA hydrolase is of minor importance because the enzyme has a high for acetoacetyl-CoA. HMG-CoA is also produced in the cytosol, where it is essential for the synthesis of several isoprenoid compounds and cholesterol (Chapter 19). The reduction of acetoacetyl-CoA to /8-hydroxybutyrate depends on the mitochondrial [NAD+]/[NADH] ratio. [Pg.375]

The basis for all enzymatic cholesterol assays is the hydrolysis of cholesterol esters by cholesterol esterase (CEH, EC 3.1.1.13) to free cholesterol and fatty acids and the oxidation of free cholesterol to cholestenone by cholesterol oxidase (COD, EC 1.1.3.6) with concomitant oxygen consumption and hydrogen peroxide formation ... [Pg.144]

The various esters of cholesterol, retinoyl esters, esters of vitamin D and E, probably depend solely on the activity of carboxylester lipase for their hydrolysis. They are, before their uptake by the enterocytes, transformed into the corresponding alcohols to form mixed micelles with bile salts. Carboxylester lipase catalyzes not only the cleavage of esters but also their formation. The most studied example is the reversible esterification of cholesterol, which is favored by low bile salt concentrations and pH [42]. Additionally, the laige specificity of carboxylester lipase probably functions as a first-line detoxification mechanism for a broad variety of orally ingested xenobiotics. [Pg.201]

In earlier sections of this chapter we focused on the distribution and physical properties of CE and on several intra- and extracellular enzymes and proteins that mediate CE formation, hydrolysis, and transfer. We turn now to a discussion of the major pathways of CE metabolism in plasma, and in cells such as fibroblasts, steroid hormone-forming cells, macrophages, and hepatocytes. These pathways seem to be integrated in such a way as to effect not only the transport and storage of cholesterol, but possibly also the transport of essential fatty acids. It can be argued in addition that the pathways of CE metabolism in plasma and in tissues provide a critical mechanism for buffering the content of UC in cell membranes and maintaining cholesterol homeostasis in the body (see Chapter 2). [Pg.107]

Biochemical alterations have been found in fragmented sarcoplasmic reticulum isolated from dystrophic human, mouse and chicken muscle. Alterations in calcium transport, ATP hydrolysis and phosphoenzyme formation have been reported. Some of these biochemical alterations in the dystrophic sarcoplasmic reticulum are suggested to be due to alterations of the lipid environment of these membranes it has been suggested that the cholesterol content of dystrophic sarcoplasmic reticulum is elevated [182-187]. [Pg.166]


See other pages where Hydrolysis cholesterol formate is mentioned: [Pg.44]    [Pg.12]    [Pg.279]    [Pg.210]    [Pg.229]    [Pg.31]    [Pg.150]    [Pg.382]    [Pg.264]    [Pg.165]    [Pg.946]    [Pg.52]    [Pg.403]    [Pg.124]    [Pg.175]    [Pg.188]    [Pg.149]    [Pg.151]    [Pg.130]    [Pg.381]    [Pg.67]    [Pg.478]    [Pg.165]    [Pg.1224]    [Pg.953]    [Pg.1787]    [Pg.291]    [Pg.66]    [Pg.81]    [Pg.102]    [Pg.109]    [Pg.115]   
See also in sourсe #XX -- [ Pg.41 , Pg.44 ]




SEARCH



Cholesterol formation

© 2024 chempedia.info