Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrogen fluoride synthesis

Hydrofluorocarbons are also prepared from acetylene or olefins and hydrogen fluoride (3), or from chlorocarbons and anhydrous hydrogen fluoride in the presence of various catalysts (3,15). A commercial synthesis of 1,1-difluoroethane, a CFG alternative and an intermediate to vinyl fluoride, is conducted in the vapor phase over an aluminum fluoride catalyst. [Pg.283]

Direct Fluorination. This is a more recently developed method for the synthesis of perfluorinated compounds. In this process, fluorine gas is passed through a solution or suspension of the reactant in a nonreactive solvent such as trichlorotrifluoroethane (CFC-113). Sodium fluoride may also be present in the reaction medium to remove the coproduct hydrogen fluoride. There has been enormous interest in this area since the early 1980s resulting in numerous journal pubHcations and patents (7—9) (see Fluorine compounds, organic-direct fluorination). Direct fluorination is especially useful for the preparation of perfluoroethers. [Pg.298]

Pubhcations have described the use of HFPO to prepare acyl fluorides (53), fluoroketones (54), fluorinated heterocycles (55), as well as serving as a source of difluorocarbene for the synthesis of numerous cycHc and acycHc compounds (56). The isomerization of HFPO to hexafluoroacetone by hydrogen fluoride has been used as part of a one-pot synthesis of bisphenol AF (57). HFPO has been used as the starting material for the preparation of optically active perfluorinated acids (58). The nmr spectmm of HFPO is given in Reference 59. The molecular stmcture of HFPO has been deterrnined by gas-phase electron diffraction (13). [Pg.304]

The standard synthesis method features side-chain chlorination of a methylpyridine (picoline), followed by exchange-fluoriaation with hydrogen fluoride or antimony fluorides (432,433). The fluoriaation of pyridinecarboxyHc acids by sulfur tetrafluoride (434) or molybdenum hexafluoride (435) is of limited value for high volume production operations due to high cost of fluorinating agent. [Pg.338]

Vlayl fluoride [75-02-5] (VF) (fluoroethene) is a colorless gas at ambient conditions. It was first prepared by reaction of l,l-difluoro-2-bromoethane [359-07-9] with ziac (1). Most approaches to vinyl fluoride synthesis have employed reactions of acetylene [74-86-2] with hydrogen fluoride (HF) either directly (2—5) or utilizing catalysts (3,6—10). Other routes have iavolved ethylene [74-85-1] and HF (11), pyrolysis of 1,1-difluoroethane [624-72-6] (12,13) and fluorochloroethanes (14—18), reaction of 1,1-difluoroethane with acetylene (19,20), and halogen exchange of vinyl chloride [75-01-4] with HF (21—23). Physical properties of vinyl fluoride are given ia Table 1. [Pg.379]

Continuous-Flow Stirred-Tank Reactors. The synthesis of j )-tolualdehyde from toluene and carbon monoxide has been carried out using CSTR equipment (81). -Tolualdehyde (PTAL) is an intermediate in the manufacture of terephthabc acid. Hydrogen fluoride—boron trifluoride catalyzes the carbonylation of toluene to PTAL. In the industrial process, separate stirred tanks are used for each process step. Toluene and recycle HF and BF ... [Pg.522]

Fluorinated and Ghlorfluorinated Sulfonic Acids. The synthesis of chlorinated and fluorinated sulfonic acids has been extensively reviewed (91,92). The Hterature discusses the reaction of dialkyl sulfides and disulfides, sulfoxides and sulfones, alkanesulfonyl haHdes, alkanesulfonic acids and alkanethiols with oxygen, hydrogen chloride, hydrogen fluoride, and oxygen—chloride—hydrogen fluoride mixtures over metal haHde catalysts, such as... [Pg.101]

Other preparative methods include direct synthesis from the elements, reaction between gaseous hydrogen fluoride and titanium tetrachloride, and decomposition of barium hexafluorotitanate [31252-69-6] BaTiF, or ammonium, (NH 2TiFg. [Pg.129]

Catalysis. Catalytic properties of the activated carbon surface are useful in both inorganic and organic synthesis. For example, the fumigant sulfuryl fluoride is made by reaction of sulfur dioxide with hydrogen fluoride and fluorine over activated carbon (114). Activated carbon also catalyzes the addition of halogens across a carbon—carbon double bond in the production of a variety of organic haUdes (85) and is used in the production of phosgene... [Pg.535]

Fluorination and iodination reactions are used relatively littie in dye synthesis. Fluorinated species include the trifluoromethyl group, which can be obtained from the trichi oromethyl group by the action of hydrogen fluoride or antimony pentafluoride, and various fluorotria2iQyl and pyrimidyl reactive systems for reactive dyes, eg, Cibacron F dyes. [Pg.293]

Selective fluonnation in polar solvents has proved commercially successful in the synthesis of 5 fluorouracil and its pyrimidine relatives, an extensive subject that will be discussed in another section Selective fluonnation of enolates [47], enols [48], and silyl enol ethers [49] resulted in preparation of a/phn-fluoro ketones, fieto-diketones, heta-ketoesters, and aldehydes The reactions of fluorine with these functionalities is most probably an addition to the ene followed by elimination of fluonde ion or hydrogen fluoride rather than a simple substitution In a similar vein, selective fluonnation of pyridmes to give 2-fluoropyridines was shown to proceed through pyridine difluondes [50]... [Pg.109]

These routes are of no use for the synthesis of orrto-trifluoromethylphenyl isocy anate, because the ortho tnchloro precursor reacts with hydrogen fluoride and then... [Pg.182]

The vapor-phase catalytic replacement of chlorine by fluorine with hydrogen fluoride as the fluorine source has been the subject of a number of patents for the synthesis of Freons or Genetrons This topic has been carefully reviewed in the literature [2, p 97ff] One advantage of using a catalyst with hydrogen fluoride is to allow some degree of selectivity in the displacement of a specific chlorine from... [Pg.186]

A nonconventional synthesis of the known inhalation anaesthetic, 2-bromo-2 chloro-l,l,l-trifluoroethane (Halothane), based on the reaction of ethyl 1,2 di bromo-1,2-dicliloroethyl ether with anhydrous hydrogen fluoride and sulfur tetrafluoride, has been patented The reaction presumably involves cleavage of the ether linkage, followed by fluorination of the intermediate bromochloroacetyl halide with sulfur tetrafluoride, ethyl halides are the by-products [2] (equation 2)... [Pg.199]

Table 3. Synthesis of ort/io-Substituted Fluoroaromatics from Nitrite Esters, Boron Trifluoride, and Hydrogen Fluoride [26]... Table 3. Synthesis of ort/io-Substituted Fluoroaromatics from Nitrite Esters, Boron Trifluoride, and Hydrogen Fluoride [26]...
An illustration of a modified Wallach fluorination is the synthesis of 2 4 di chloro-5-fluorotoluene, an intermediate in the preparation of the fluoroquinolone antibacterial ciprofloxacin This was prepared in 69% overall yield by heating W(2,4-dichloro-5-methylphenyl) N, N dimethyltriazene in anhydrous hydrogen fluoride [44] (equation 11)... [Pg.277]

Notable examples of general synthetic procedures in Volume 47 include the synthesis of aromatic aldehydes (from dichloro-methyl methyl ether), aliphatic aldehydes (from alkyl halides and trimethylamine oxide and by oxidation of alcohols using dimethyl sulfoxide, dicyclohexylcarbodiimide, and pyridinum trifluoro-acetate the latter method is particularly useful since the conditions are so mild), carbethoxycycloalkanones (from sodium hydride, diethyl carbonate, and the cycloalkanone), m-dialkylbenzenes (from the />-isomer by isomerization with hydrogen fluoride and boron trifluoride), and the deamination of amines (by conversion to the nitrosoamide and thermolysis to the ester). Other general methods are represented by the synthesis of 1 J-difluoroolefins (from sodium chlorodifluoroacetate, triphenyl phosphine, and an aldehyde or ketone), the nitration of aromatic rings (with ni-tronium tetrafluoroborate), the reductive methylation of aromatic nitro compounds (with formaldehyde and hydrogen), the synthesis of dialkyl ketones (from carboxylic acids and iron powder), and the preparation of 1-substituted cyclopropanols (from the condensation of a 1,3-dichloro-2-propanol derivative and ethyl-... [Pg.144]

In certain reactions, AS is nearly zero, and AH is the only important component of the driving force for spontaneity. An example is the synthesis of hydrogen fluoride from the elements... [Pg.460]

Anhydrous hydrogen fluoride is widely used for the synthesis of fluoride compounds [68]. In particular, NaNbF6 and Na2NbF7 were prepared using a solution of anhydrous hydrogen fluoride, HF, containing dissolved NbF5 and NaF [69]. [Pg.23]

Polyphosphoric acid is a commonly used catalyst for this reaction however, in some cases a mixture of hydrogen bromide/acetic acid gives better results. Acylation of the S-phenyl-, V-(4-tolyl)- or S-(l-naphthyl)-substituted thiobenzenepyruvic acids 3a-c affords the corresponding dibenzo[A,/]thiepins in satisfactory yields, while reaction of the S-(4-methoxyphenyl) or S-(2-naphthyl) derivatives fails to provide any thiepin.60 The intramolecular Friedel-Crafts acylation of 2-(arylsulfanyl)benzeneacetic acids also yields the corrresponding dibenzothiepins in this case the use of hydrogen fluoride sometimes results in purer products.38 The applicability of this method is restricted to the synthesis of stable bisannulated thiepins. [Pg.73]

The reaction of tetramethylsilane with fluorine led to the isolation of several, partially fluorine-substituted tetramethylsilanes (see Tables VII-IX), and preservation of over 80% of the silicon-carbon bonds in the initial, tetramethylsilane reactant. The stability of many of the partially fluorinated germanes and silanes (some are stable to over 100°C) is very surprising, for the possibility of elimination of hydrogen fluoride is obvious. Indeed, before the first reported synthesis (12) of... [Pg.198]

Deoxy-3 -fluorothymidine (813), a selective inhibitor of DNA synthesis, was prepared " in moderate yields from 3 -0-mesyl- or 3, 5 -di-O-mesyl-thymidine, through 2,3 -anhydro-1 -(2-deoxy- -D-t/2reopentofur-anosyl)thymine (808), by treatment with hydrogen fluoride (0.1% HF in l,4-dioxane-AlF3, 3.764 hf in DMF-AlFj, or 10% HF in DMF ),... [Pg.257]

C21-0082. Calcium dihydrogen phosphate is a common phosphoras fertilizer that is made by treating fluoroapatite with phosphoric acid. Hydrogen fluoride is a by-product of the synthesis. Write a balanced equation for the production of this fertilizer and calculate the mass percent of phosphorus in the fertilizer. [Pg.1551]


See other pages where Hydrogen fluoride synthesis is mentioned: [Pg.54]    [Pg.180]    [Pg.335]    [Pg.445]    [Pg.113]    [Pg.181]    [Pg.941]    [Pg.943]    [Pg.283]    [Pg.176]    [Pg.195]    [Pg.248]    [Pg.230]    [Pg.485]    [Pg.98]    [Pg.259]    [Pg.286]    [Pg.102]    [Pg.110]    [Pg.153]    [Pg.915]    [Pg.73]    [Pg.458]    [Pg.56]    [Pg.201]    [Pg.234]   
See also in sourсe #XX -- [ Pg.603 , Pg.614 , Pg.615 , Pg.616 ]




SEARCH



Fluorides synthesis

Hydrogenation synthesis

© 2024 chempedia.info