Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Bonds silicon-carbon

The view has also existed in the past that the carbon-silicon bond should be similar in behaviour to the carbon-carbon bond and would have a similar average bond energy. There is some measure of truth in the assumption about average bond energy but because silicon is more electropositive than carbon the C—Si bond will be polar and its properties will be very dependent on the nature of groups attached to the carbon and silicon groups. For example, the CH3—Si group is particularly resistant to oxidation but H13—Si is not. [Pg.816]

The rotational barrier in methylsilane (Table 3.4, entry 5) is significantly smaller than that in ethane (1.7 versus 2.88 kcal/mol). This reflects the decreased electron-electron rqjulsions in the eclipsed conformation resulting from the longer carbon-silicon bond length (1.87 A) compared to the carbon-carbon bond length (1.54 A) in ethane. [Pg.131]

Computational investigations of vinylsilanes indicate that there is a groimd-state interaction between the alkene n oibital and the carbon-silicon bond which raises the energy of the n HOMO and enhances reactivity. Furthermore, this stereoelectronic interaction favors attack of the electrophile anti to the silyl substituent. [Pg.397]

The silyl group directs electrophiles to the substituted position. That is, it is an ipso-directing group. Because of the polarity of the carbon-silicon bond, the substituted position is relatively electron-rich. The ability of silicon substituents to stabilize carboca-tion character at )9-carbon atoms (see Section 6.10, p. 393) also promotes ipso substitution. The silicon substituent is easily removed from the c-complex by reaction with a nucleophile. The desilylation step probably occurs through a pentavalent silicon species ... [Pg.589]

Epoxides are regio- and stereoselectively transformed into fluorohydrins by silicon tetrafluoride m the presence of a Lewis base, such as diisopropyleth-ylamme and, m certain instances, water or tetrabutylammonium fluoride The reactions proceed under very mild conditions (0 to 20 C in 1,2-diohloroethane or diethyl ether) and are highly chemoselective alkenes, ethers, long-chain internal oxiranes, and carbon-silicon bonds remain intact The stereochemical outcome of the epoxide ring opening with silicon tetrafluoride depends on an additive used, without addition of water or a quaternary ammonium fluoride, as fluorohydrins are formed, whereas m the presence of these additives, only anti opening leading to trans isomers is observed [17, 18] (Table 2)... [Pg.204]

Additions Forming Carbon-Carbon and Carbon-Silicon Bonds... [Pg.761]

A short digression is in order at this juncture. The electrophilic substitution of a vinylsilane is a very useful process because it is generally both regio- and stereospecific. The carbon-silicon bond is strongly polarized due to the high electronegativity of carbon (2.35) relative to silicon (1.64).67b A unique and important conse-... [Pg.608]

This excellent method of oxidative cleavage (/) of carbon-silicon bonds requires that the silane carry an electronegative substituent (2), such as alkoxy or fluoro. Either hydrogen peroxide or mcpba may be used as oxidant, and the alcohol is produced with retention of configuration (3). Fluoride ion is normally a mandatory additive in what is believed to be a fluoride ion-assisted rearrangement of a silyl peroxide, as shown below ... [Pg.123]

Alkylsilanes are not very nucleophilic because there are no high-energy electrons in the sp3-sp3 carbon-silicon bond. Most of the valuable synthetic procedures based on organosilanes involve either alkenyl or allylic silicon substituents. The dominant reactivity pattern involves attack by an electrophilic carbon intermediate at the double bond that is followed by desilylation. Attack on alkenylsilanes takes place at the a-carbon and results in overall replacement of the silicon substituent by the electrophile. Attack on allylic groups is at the y-carbon and results in loss of the silicon substituent and an allylic shift of the double bond. [Pg.814]

Scheme 3.70 illustrates three examples in which the highly efficient construction of bi- and polycyclic compounds 3-274, 3-276 and 3-278 from 3-273, 3-275 and 3-277, respectively, is depicted. It should be noted that the carbon-silicon bond in the obtained products can be easily cleaved [110] to achieve valuable synthons for further transformations. [Pg.265]

It was found that treatment of a mixture of 120 and 121 with tris(diethylamino-sulfonium) trimethyldifluorosilicate [TASF(Et)] resulted in smooth addition-elimination to the naphthoquinone to form the y-alkylation product 125 (85 %). TASF(Et) is a convenient source of soluble, anhydrous fluoride ion [47]. It is believed that exposure of 121 to TASF(Et) results in fluoride transfer to generate a hypervalent silicate anion, as depicted in structure 124. The transfer of fluoride between TASF(Et) and 121 may be driven by stabilization of the anionic species 124 by delocalization of the carbon-silicon bond into the LUMO of the unsaturated ketone. 1,4-Addition-elimination of this species to the naphthoquinone 120 would then form the observed product. [Pg.59]

Catalytic asymmetric hydrosilylation of prochiral olefins has become an interesting area in synthetic organic chemistry since the first successful conversion of alkyl-substituted terminal olefins to optically active secondary alcohols (>94% ee) by palladium-catalyzed asymmetric hydrosilylation in the presence of chiral monodentate phosphine ligand (MOP, 20). The introduced silyl group can be converted to alcohol via oxidative cleavage of the carbon-silicon bond (Scheme 8-8).27... [Pg.459]

Allylsilanes have been found to be more reactive than vinyl silanes toward electrophiles and they are being studied more intensively in recent years because they hold considerable promise in organic synthesis. In allylsilanes, the geometry of carbon-silicon bond can be more favourably be oriented for efficient stabilization of a developing positive change P to silicon. [Pg.202]

The carbon-silicon bond is quite strong ( 75 kcal/mol), and trimethylsilyl groups are stable under many of the reaction conditions which are typically used in organic synthesis. Thus, much of the repertoire of synthetic organic chemistry can be used for elaboration of organosilanes.46 47 48... [Pg.566]

Sengupta showed that the reaction of bis-arenediazonium salt 91 with vinyl(triethoxy)silane 92 afforded poly(phenylene-vinylene) 93. Although the reaction apparently proceeds through the Heck reaction mechanism, which is described in Section 11.19.4, a part of the step-growth reaction is indeed a transformation of the carbon-silicon bond of 92 to the carbon-carbon bond (Equation (44)). [Pg.669]

The diphenyl derivative is more stable than the radical anion of its carbon derivative, 9,9-diphenylfluorene, but, after extended periods of reduction, the spectrum of the biphenyl radical anion begins to grow in intensity. The 5,5-dimethyl derivative appears to be stable under these conditions. The enhanced stability of the silicon derivative might be due to stabilization of the carbon-silicon bonds by delocalization of charge into available d-orbitals 81). Methyl proton hyperfine splitting observed for the anion radicals of the 5,5-dimethyl- and 5,5-diethyldibenzosilole has been cited as evidence for d-7r interaction (56). [Pg.295]

None of these difficulties arise when hydrosilylation is promoted by metal catalysts. The mechanism of the addition of silicon-hydrogen bond across carbon-carbon multiple bonds proposed by Chalk and Harrod408,409 includes two basic steps the oxidative addition of hydrosilane to the metal center and the cis insertion of the metal-bound alkene into the metal-hydrogen bond to form an alkylmetal complex (Scheme 6.7). Interaction with another alkene molecule induces the formation of the carbon-silicon bond (route a). This rate-determining reductive elimination completes the catalytic cycle. The addition proceeds with retention of configuration.410 An alternative mechanism, the insertion of alkene into the metal-silicon bond (route b), was later suggested to account for some side reactions (alkene reduction, vinyl substitution).411-414... [Pg.322]

The use of a silyl ether temporary linkage introduced by Nishiyama [82J and Stork [77,83] allows the facile cleavage of the five-membered ring formed in the cyclization by oxidation of the carbon-silicon bond. This procedure has been successfully used for the hydroxymethylation of sugars at position 3, 4, and 6 [84-86] (Scheme 24). [Pg.221]


See other pages where Bonds silicon-carbon is mentioned: [Pg.817]    [Pg.610]    [Pg.88]    [Pg.125]    [Pg.771]    [Pg.172]    [Pg.87]    [Pg.809]    [Pg.124]    [Pg.241]    [Pg.148]    [Pg.815]    [Pg.832]    [Pg.49]    [Pg.14]    [Pg.77]    [Pg.89]    [Pg.378]    [Pg.141]    [Pg.113]    [Pg.161]    [Pg.276]    [Pg.694]    [Pg.23]    [Pg.662]    [Pg.459]    [Pg.132]   
See also in sourсe #XX -- [ Pg.31 ]




SEARCH



© 2024 chempedia.info