Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrocarbon metal complexes, stability

The purpose of this section is not to enquire into the mechanisms of these reactions, relevant though this might be to the subject of metal-catalyzed processes. It is rather to note those complexes which are reactive in the reactions listed above and to add this information to our small sum of knowledge concerning the stability of hydrocarbon metal complexes. [Pg.219]

Argenlalion chromalography, 261 Aromatic acids in human urine, 285 Aromatic hydrocarbons, 69 Arylhydroxylamines, 298 Ascorbic acid, 296 Aspirin, 282 Asymmetric diens, 290 Asymmetrical peaks, 58, 82, 160 AIT, stability constants of metal complexes. 278 Atrazine, 292 Atropine, 297 Axial diffusion mobile phase. 8 stationary phase, 8,9 Aza-arenes, 293 Azoxybenzenes, 298... [Pg.164]

It seems beyond debate that when an exchange reaction of a hydrocarbon (HC) with D2 is observed and the initial product distributions are binomial (random distribution of D atoms), single c-metal-carbon bonds are being formed. Nevertheless, this conclusion was puzzling in the period when virtually no homogeneous alkyl-metal complexes were known and the stability of alkyl-metal complexes was doubted for principal reasons (see, e.g., 169). However, it appeared that these complexes can be rather stable when one blocks a very fast and easy elimination of one of the H atoms in the jS-position, which step decomposes the alkyl-metal bond into an olefin and a bound hydrogen atom (170,171). On the other hand, this means that the transition... [Pg.165]

The first metal-olefin complex was reported in 1827 by Zeise, but, until a few years ago, only palladium(II), platinum(Il), copper(I), silver(I), and mercury(II) were known to form such complexes (67, 188) and the nature of the bonding was not satisfactorily explained until 1951. However, recent work has shown that complexes of unsaturated hydrocarbons with metals of the vanadium, chromium, manganese, iron, and cobalt subgroups can be prepared when the metals are stabilized in a low-valent state by ligands such as carbon monoxide and the cyclopentadienyl anion. The wide variety of hydrocarbons which form complexes includes olefins, conjugated and nonconjugated polyolefins, cyclic polyolefins, and acetylenes. [Pg.78]

The development of mesoporous materials with more or less ordered and different connected pore systems has opened new access to large pore high surface area zeotype molecular sieves. These silicate materials could be attractive catalysts and catalyst supports provided that they are stable and can be modified with catalytic active sites [1]. The incorporation of aluminum into framework sites of the walls is necessary for the establishment of Bronsted acidity [2] which is an essential precondition for a variety of catalytic hydrocarbon reactions [3], Furthermore, ion exchange positions allow anchoring of cationic transition metal complexes and catalyst precursors which are attractive redox catalytic systems for fine chemicals [4]. The subject of this paper is the examination of the influence of calcination procedures, of soft hydrothermal treatment and of the Al content on the stability of the framework aluminum in substituted MCM-41. The impact on the Bronsted acidity is studied. [Pg.243]

Several transition-metal complexes of cyclobutadiene have been prepared, and this is all the more remarkable because of the instability of the parent hydrocarbon. Reactions that logically should lead to cyclobutadiene give dimeric products instead. Thus, 3,4-dichlorocyclobutene has been de-chlorinated with lithium amalgam in ether, and the hydrocarbon product is a dimer of cyclobutadiene, 5. However, 3,4-dichlorocyclobutene reacts with diiron nonacarbonyl, Fe2(CO)9, to give a stable iron tricarbonyl complex of cyclobutadiene, 6, whose structure has been established by x-ray analysis. The 7r-electron system of cyclobutadiene is considerably stabilized by complex formation with iron, which again attains the electronic configuration of krypton. [Pg.1507]

The simplest supported catalysts are mononuclear metal complexes, exemplified by industrial supported metallocene catalysts, used (with promoters) for alkene polymerization these are the so-called single-site catalysts that are finding wide industrial applications (Kristen, 1999 Kaminsky, 1999 Roscoe et al., 1998). The most common supports are metal oxides and zeolites. The metals in these complexes range from oxophilic (e.g., Zr and Ta) to noble (e.g., Rh). Supported metal complexes are stabilized by ligands—in addition to those provided by the support—such as hydride (H), hydrocarbons, and carbonyl (CO). In a typical supported metal complex, the metal is present in a positive oxidation state. Although some such complexes are relatively stable, most are, befitting their roles as catalysts, highly reactive and air- and moisture-sensitive. [Pg.51]

CatalystY of cobalt-carbonyl reactions can ntiUze tbe water solnbiUty of the salt and the hydrocarbon solnbihty of the metal metal dimer. Ion pairing is important in the disproportionated metal complexes, and traces of water in organic solvents can not only serve as catalysts for this reaction but can also influence the equilibrium position by stabilizing the ionic products. [Pg.1155]

The special effect of cyclopropyl is noteworthy since the tricyclopropyl-cyclopropenyl cation, the most stable of all the hydrocarbon cyclopropenyl cations, is nearly as stable as cations stabilized by complexation with organometallic reagents. The triferrocenyl and tri(3-guaiazulenyl)cyclopropenyl ions can be cited as examples since these species have P r+ values greater than 10. Other metal complexed cyclopropenyl species have also been reported " " ... [Pg.1542]

Titanium tetrachloride and aluminium triethyl form a hydrocarbon soluble complex at low temperatures which decomposes at —30°C to give the trichloride as a major product [32]. Complexes containing tetravalent titanium stabilized by adsorption on titanium trichloride apparently persist in catalysts prepared at Al/Ti ratios below 1.0 [33], but at higher ratios there are some Ti(II) sites present in the catalyst [34]. Analysis shows that at Al/Ti ratios above 1.0 the solid precipitate contains divalent titanium or even lower valency states of the metal [35]. Reduction of TiCl4 with AlEt2 Cl is less rapid and extensive than with AlEts and even at high Al/Ti ratios [36] reduction does not proceed much below the trivalent state. Aluminium alkyl dihalides are still less reactive and reduction to TiClj is slow and incomplete except at high Al/Ti ratios or elevated temperatures [37]. [Pg.140]

Carbon dioxide, water, ethane, ethylene, propane, ammonia, xenon, nitrous oxide, and fluoroform have been considered useful solvents for SEE. Carbon dioxide has so far been the most widely used as a supercritical solvent because of its convenient critical temperature, 304°K, low cost, chemical stability, nonflammability, and nontoxicity. Its polar character as a solvent is intermediate between a truly nonpolar solvent such as hexane and a weakly polar solvent. Moreover, COj also has a large molecular quadrupole. Therefore, it has some limited affinity with polar solutes. To improve its affinity, additional species are often introduced into the solvent as modifiers. For instance, methanol increases C02 s polarity, aliphatic hydrocarbons decrease it, toluene imparts aromaticity, R-2-butanol adds chirality, and tributyl phosphate enhances the solvation of metal complexes. [Pg.601]

The highly electronegative metal ion affords the appropriate empty orbitals for the stabilization of the complex anion in the transition state. Both late and early transition metal alkyls are prone to this reaction, but its occurrence had to be particularly, invoked in the case of the early transition metals. Many similar reactions, such as the reaction of metal alkyls with other FIX compounds, could be described as if they followed this pathway, but the use of the term a-bond metathesis is restricted to those reactions in which one reacting species is a metal hydrocarbyl or metal hydride and the other reactant is a hydrocarbon or dihydrogen. Two reactions have been depicted in Fig. 4.34. There are, of course, borderline cases when the reacting hydrocarbon is acidic, as in the case of 1-alkynes, a direct attack of the proton at the carbanion can be envisaged. It has been proposed that acyl metal complexes of the late transition metals may also... [Pg.146]

Three recent developments in the molecular orbital theory of electronic structure are particularly worthy of note. These are first, the successful analysis and quantitative interpretation of the spectra of unsaturated hydrocarbons and their simple derivatives 7 secondly, the development of a sound descriptive theory of the structures of electron-deficient compounds and thirdly, the elucidation of the principles underlying the structures and stabilities of inorganic metal complexes. These three topics are largely independent and each could occupy in itself a review of this length. However, the recent advances in the theory of inorganic metal complexes have been admirably covered in a recent review by... [Pg.239]


See other pages where Hydrocarbon metal complexes, stability is mentioned: [Pg.213]    [Pg.214]    [Pg.216]    [Pg.140]    [Pg.300]    [Pg.7]    [Pg.596]    [Pg.21]    [Pg.323]    [Pg.105]    [Pg.244]    [Pg.183]    [Pg.4]    [Pg.161]    [Pg.3]    [Pg.376]    [Pg.42]    [Pg.37]    [Pg.101]    [Pg.119]    [Pg.199]    [Pg.34]    [Pg.376]    [Pg.630]    [Pg.284]    [Pg.101]    [Pg.156]    [Pg.264]    [Pg.707]    [Pg.78]    [Pg.170]   


SEARCH



Complex Stabilization

Complexation stabilization

Hydrocarbons complexes

Metal complex, stability

Metal complexes stabilization

Metal-hydrocarbon complexes

Metallic stabilizers

Metals hydrocarbons

Metals stabilization

Stability complexes

© 2024 chempedia.info