Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sorption hydration

Ziegler, F., Giere, R. Johnson, C. A. 2001a. The sorption mechanisms of zinc to calcium silicate hydrate Sorption studies and microscopic investigations. Environmental Science and Technology, 35, 4556-4561. [Pg.606]

Kirsh, Y.E., Fedotov, Y.A., Semenova, S.I. et al. 1995. Snlfonate containing aromatic polyamides as materials of pervaporation membranes for dehydration of organic solvents Hydration, sorption, diffusion and functioning. 103(1-2) ... [Pg.321]

There was studied dependence of sorption rate values of microamounts high listed elements from time of their contact with sorbents, pH media and means of equilibrium concentration. It is shown that owing to exchange of sorbents surface characteristics, its hydrating rate value and heterogeneity of sorbate and hydrolyzed forms of metals investigated interaction with surface can simultaneously proceed on several mechanisms. The contributions of various factors into adsorption of elements-analogues are depended from sorption conditions and nature of sorbent surface. [Pg.265]

Sorption activity differences of listed elements on aerosile A-300 and K-7-30 have been established depending from pH media. It was marked that disparity of pH sorption optimum values (pH, ) is caused by changes of composition and stmcture of hydrated cover ot sorbents. The presence of hydrated and a solvate surface layer on K-7-30 is the reason of differences at degree of hydrolysis of taken elements and composition of their hydrolyzed forms. [Pg.265]

Surface-contact films and massive hydrates, which form by sorption of gas and water molecules on the surfaces of growing crystals... [Pg.174]

Bulk diffusional whiskerlike hydrate, which forms both in the volume of gas and in the bulk of liquid water through sorption of molecules on the growing crystal surface and by tunnel sorption of molecules at the base of the crystal... [Pg.174]

Greater adsorption of trace metals is found at higher pH and C02(g) concentrations. Sites available for Zn2+ sorption are less than 10% of the Ca2+ sites on the calcite surface, and Zn adsorption is independent of surface charge. This indicates a surface complex with a covalent character (Zachara et al., 1991). Furthermore, the surface complex remains hydrated and labile because Zn2+ is rapidly exchangeable with Ca2+, Zn2+ and ZnOH. At the dolomite-solution interface, the carbonate(C03)-metal (Ca/Mg) complex dominates surface speciation at pH > 8, but at pH 4-8, hydroxide (OH) -metal (Ca/Mg) dominates surface speciation (Pokrovsky et al., 1999). Calcite has an observed selectivity sequence Cd > Zn > Mn > Co > Ni > Ba = Sr, but their sorption reversibility is correlated with the hydration energies of the metal sorbates. Cadmium and Mn dehydrate soon after adsorption to calcite and form a precipitate, while Zn, Co and Ni form surface complexes, remaining hydrated until the ions are incorporated into the structure by recystallization (Zachara et al., 1991). [Pg.148]

Zinc adsorption can occur via exchange of Zn2+ and Zn(OH)+ with surface-bound Ca2+ on calcite (Zachara et al., 1988). Zinc and Ni form surface complexes on calcite as hydrate until they are incorporated into the structure via recrystallization (Zachara et al., 1991). The selectivity of metal sorption on calcite is as follows Cd > Zn > Ni (Zachara et al., 1991). The easily reducible oxide bound metals are primarily from Mn oxides (Chao, 1972 Shuman, 1982 and 1985a). At pH > 6, Zn sorption on Mn oxide abruptly increases because of hydroxylation of the ions (Loganathan et al., 1977), and a high soil pH in arid soil may favor Zn sorption on Mn oxides due to a great... [Pg.189]

The formation of niclosamide hydrates, and the effect of relative humidity on the solvatomorphs obtained from acetone and ethyl acetate has been studied [79], The acetone and ethyl acetate solvatomorphs could be desolvated, and exposure to elevated humidity resulted in the formation of two hydrate structures. Each hydrate could be dehydrated into a different anhydrate phase, but only the hydrate formed from the acetone desolvate could be rehydrated to form a hydrate phase. Dynamic vapor sorption has been used to develop a method for determining the onset relative humidity of a glass transition and associated crystallization process [80]. [Pg.273]

Carrizosa MJ, Hermosin MC, Koskinen WC, Cornejo J (2004) Interactions of two sulfonylurea herbicides with organoclays. Clays Clay Miner 52 643-649 Celis R, Hermosin MC, Cornejo J (2000) Heavy metal adsorption by functionalized clays. Environ Sci Technol 34 4593-4599 Chappell MA, Laird DA, Thompson ML, Li H, Teppen BJ, Johnston CT, Boyd SA (2005) Influence of smectite hydration and swelling on atrazine sorption behavior. Environ. Sci Technol 39 3150-3156 Chiou CT (1989) Theoretical considerations of the partition uptake of nonionic organic compounds by soil organic matter. In Sawhney BL, Brown K (eds) Reactions and movement of organic chemicals in soils. Soil Science Society of America, Madison, WI, pp 1-29... [Pg.169]

Laird DA, Barriuso E, Dowdy RH, Koskinen WC (1992) Adsorption of atrazine on smectites. Soil Sci Soc Am J 56 62-67 Laird DA, Fleming PD (1999) Mechanisms for adsorption of organic bases on hydrated smectite surfaces. Environ Toxicol Chem 18 1668-1672 Lambert SM (1967) Functional relationship between sorption in soil and chemical structure. J Agric Food Chem 15 572-576 Lambert SM (1968) Omega, a useful index of soil sorption equilibria. J Agric Food Chem 16 340-343... [Pg.278]

The sorption of water vapor onto nonhydrating crystalline solids below RHq will depend on the polarity of the surface(s) and will be proportional to surface area. For example, water exhibits little tendency to sorb to nonpolar solids like carbon or polytetrafluorethylene (Teflon) [21], but it sorbs to a greater extent to more polar materials such as alkali halides [34-37] and organic salts like sodium salicylate [37]. Since water is only sorbed to the external surface of these substances, relatively small amounts (i.e., typically less than 1 mg/g) of water are sorbed compared with hydrates and amorphous materials that absorb water into their internal structures. [Pg.399]

Nonspecific hydration, or hydration of the lattice without first-order phase transitions, also must be considered. Cox et al. [40] reported the moisture uptake profile of cromolyn sodium, and the related effects on the physical properties of this substance. Although up to nine molecules of water per molecule of cromolyn sodium are sorbed into the crystalline lattice at 90% relative humidity, the sorption profile does not show any sharp plateaus corresponding to fixed hydrates. Rather, the uptake profile exhibits a gradual increase in moisture content as relative humidity increases, which results in... [Pg.402]

Toteja RSD, Jangida BL, Sundaresan M, Venkataramani B (1997) Water sorption isotherms and cation hydration in dowex 50w and amberlyst-15 ion exchange resins. Langmuir 13 2980-2982... [Pg.186]

Various forms of macro- and microelements differ in their ability to migrate and redistribute among the soil profile. The elements contained in clastic minerals are practically immobile. The elements, bound to finely dispersed clay minerals, are either co-transported with clay particles, or are involved in sorption-desorption processes. Part of the elements are found in concretions and also in very thin coating films of hydrated iron oxides some elements make a part of specially edaphic organic compounds. [Pg.157]

Elizalde, B. E., Pilosof, A. M. R., and Bartholomai, G. B. (1996). Empirical model for water uptake and hydration rate of food powders by sorption and Baumann methods. /. Food Sci. 61, 407-409. [Pg.216]

Pulsed field gradient (PFG)-NMR experiments have been employed in the groups of Zawodzinski and Kreuer to measure the self-diffusivity of water in the membrane as a function of the water content. From QENS, the typical time and length scales of the molecular motions can be evaluated. It was observed that water mobility increases with water content up to almost bulk-like values above T 10, where the water content A = nn o/ nsojH is defined as the ratio of the number of moles of water molecules per moles of acid head groups (-SO3H). In Perrin et al., QENS data for hydrated Nation were analyzed with a Gaussian model for localized translational diffusion. Typical sizes of confining domains and diffusion coefficients, as well as characteristic times for the elementary jump processes, were obtained as functions of A the results were discussed with respect to membrane structure and sorption characteristics. ... [Pg.357]

The amount of adsorbed chemical is controlled by both properties of the chemical and of the clay material. The clay saturating cation is a major factor affecting the adsorption of the organophosphorus pesticide. The adsorption isotherm of parathion from an aqueous solution onto montmorillonite saturated with various cations (Fig. 8.32), shows that the sorption sequence (Al > Na > Ca ) is not in agreement with any of the ionic series based on ionic properties. This shows that, in parathion-montmoriUonite interactions in aqueous suspension, such factors as clay dispersion, steric effects, and hydration shells are dominant in the sorption process. In general, organophosphorus adsorption on clays is described by the Freundhch equation, and the values for parathion sorption are 3 for Ca +-kaoUnite, 125 for Ca -montmorillonite, and 145 for Ca -attapulgite. [Pg.189]


See other pages where Sorption hydration is mentioned: [Pg.264]    [Pg.1540]    [Pg.265]    [Pg.23]    [Pg.11]    [Pg.87]    [Pg.147]    [Pg.154]    [Pg.270]    [Pg.49]    [Pg.387]    [Pg.398]    [Pg.401]    [Pg.402]    [Pg.412]    [Pg.423]    [Pg.150]    [Pg.298]    [Pg.7]    [Pg.224]    [Pg.45]    [Pg.169]    [Pg.175]    [Pg.183]    [Pg.322]    [Pg.327]    [Pg.338]    [Pg.343]    [Pg.124]    [Pg.156]    [Pg.624]    [Pg.244]   
See also in sourсe #XX -- [ Pg.41 , Pg.42 , Pg.43 , Pg.44 ]




SEARCH



Hydrates moisture sorption

Water sorption, hydrates

© 2024 chempedia.info