Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Histamine, amino acid

Other chemicals of possible concern for health and safety found ia yeast proteias iaclude tyramiae (0—2.25 mg/g) and histamine (0.2—2.8 mg/g), formed by decarboxylation of the corresponding amino acids (38). These compounds are also found ia other fermeated (including pickled) foods. Their preseace ia yeast extracts used as condiments coatributes very Htde to human iatake. Likewise, the nephrotoxic compouad lysiaoalaniae has beea ideatified ia alkah-treated yeast extracts, at a level of 0.12 mg/g. However, the chemical occurs at similar low coaceatratioas ia almost all heat- and alkaU-treated foods. [Pg.394]

Certain amino acids and their derivatives, although not found in proteins, nonetheless are biochemically important. A few of the more notable examples are shown in Figure 4.5. y-Aminobutyric acid, or GABA, is produced by the decarboxylation of glutamic acid and is a potent neurotransmitter. Histamine, which is synthesized by decarboxylation of histidine, and serotonin, which is derived from tryptophan, similarly function as neurotransmitters and regulators. /3-Alanine is found in nature in the peptides carnosine and anserine and is a component of pantothenic acid (a vitamin), which is a part of coenzyme A. Epinephrine (also known as adrenaline), derived from tyrosine, is an important hormone. Penicillamine is a constituent of the penicillin antibiotics. Ornithine, betaine, homocysteine, and homoserine are important metabolic intermediates. Citrulline is the immediate precursor of arginine. [Pg.87]

FIGURE 4.5 The structures of some ammo acids that are not normally found in proteins but that perform other important biological functions. Epinephrine, histamine, and serotonin, although not amino acids, are derived from and closely related to amino acids. [Pg.88]

Histamine is synthesized from the amino acid histidine via the action of the specific enzyme histidine decarboxylase and can be metabolized by histamine-TV-methyl transferase or diamine oxidase. Interesting, in its role as a neurotransmitter the actions of histamine are terminated by metabolism rather than re-uptake into the pre-synaptic nerve terminals. [Pg.588]

The human histamine Hi-receptor is a 487 amino acid protein that is widely distributed within the body. Histamine potently stimulates smooth muscle contraction via Hi-receptors in blood vessels, airways and in the gastrointestinal tract. In vascular endothelial cells, Hi-receptor activation increases vascular permeability and the synthesis and release of prostacyclin, plateletactivating factor, Von Willebrand factor and nitric oxide thus causing inflammation and the characteristic wheal response observed in the skin. Circulating histamine in the bloodstream (from, e.g. exposure to antigens or allergens) can, via the Hi-receptor, release sufficient nitric oxide from endothelial cells to cause a profound vasodilatation and drop in blood pressure (septic and anaphylactic shock). Activation of... [Pg.589]

The histamine H2-receptor (359 amino acids) is best known for its effect on gastric acid secretion. Histamine H2-receptor activation, in conjunction with gastrin and acetylcholine from the vagus, potently stimulate acid secretion from parietal cells. High concentrations of histamine are also present in cardiac tissues and can stimulate positive chronotropic and inotropic effects via H2-receptor stimulation and activation of adenylyl... [Pg.589]

Histamine is a critical mediator in anaphylactic reactions. It is a diamine produced by decarboxylation of the amino acid histidine in the Golgi apparatus of mast cells and basophils. Once secreted, it is rapidly metabolized by histamine methyltransferase [2]. Plasma histamine levels are elevated in anaphylaxis, reaching a concentration peak at 5 min and declining to baseline by 30-60 min [3]. Therefore, histamine samples for assessing an anaphylactic reaction should be obtained within 15 min of the onset of the reaction. Urinary metabolites of histamine may be found for up to 24 h. [Pg.126]

Important products derived from amino acids include heme, purines, pyrimidines, hormones, neurotransmitters, and biologically active peptides. In addition, many proteins contain amino acids that have been modified for a specific function such as binding calcium or as intermediates that serve to stabilize proteins—generally structural proteins—by subsequent covalent cross-hnk-ing. The amino acid residues in those proteins serve as precursors for these modified residues. Small peptides or peptide-like molecules not synthesized on ribosomes fulfill specific functions in cells. Histamine plays a central role in many allergic reactions. Neurotransmitters derived from amino acids include y-aminobutyrate, 5-hydroxytryptamine (serotonin), dopamine, norepinephrine, and epinephrine. Many drugs used to treat neurologic and psychiatric conditions affect the metabolism of these neurotransmitters. [Pg.264]

Decarboxylation of histidine to histamine is catalyzed by a broad-specificity aromatic L-amino acid decarboxylase that also catalyzes the decarboxylation of dopa, 5-hy-droxytryptophan, phenylalanine, tyrosine, and tryptophan. a-Methyl amino acids, which inhibit decarboxylase activity, find appfication as antihypertensive agents. Histidine compounds present in the human body include ergothioneine, carnosine, and dietary anserine (Figure 31-2). Urinary levels of 3-methylhistidine are unusually low in patients with Wilson s disease. [Pg.265]

Amino acid receptors Monoamine receptors Lipid receptors Purine receptors Neuropeptide receptors Peptide hormone receptors Chemokine receptors Glycoprotein receptors Protease receptors Metabotropic glutamate and GABAb receptors Adrenoceptors, dopamine and 5-HT receptors, muscarinic and histamine receptors Prostaglandin, thromboxane and PAF receptors Adenosine and ATP (P2Y) receptors Neuropeptide Y, opiate, cholecystokinin VIP, etc. Angiotensin, bradykinin, glucagon, calcitonin, parathyroid, etc. Interleukin-8 TSH, LH/FSH, chorionic gonadotropin, etc. Thrombin... [Pg.69]

Histamine is synthesised by decarboxylation of histidine, its amino-acid precursor, by the specific enzyme histidine decarboxylase, which like glutaminic acid decarboxylase requires pyridoxal phosphate as co-factor. Histidine is a poor substrate for the L-amino-acid decarboxylase responsible for DA and NA synthesis. The synthesis of histamine in the brain can be increased by the administration of histidine, so its decarboxylase is presumably not saturated normally, but it can be inhibited by a fluoromethylhistidine. No high-affinity neuronal uptake has been demonstrated for histamine although after initial metabolism by histamine A-methyl transferase to 3-methylhistamine, it is deaminated by intraneuronal MAOb to 3-methylimidazole acetic acid (Fig. 13.4). A Ca +-dependent KCl-induced release of histamine has been demonstrated by microdialysis in the rat hypothalamus (Russell et al. 1990) but its overflow in some areas, such as the striatum, is neither increased by KCl nor reduced by tetradotoxin and probably comes from mast cells. [Pg.270]

Several taxa of Enterobacteriaceae inclnding Morganella morganii, Proteus vulgaris, and Raoultella (Klebsiella) planticola are able to decarboxylate the amino acid histidine, which is abundant in the mnscle tissne of scombroid hsh (Yoshinaga and Frank 1982 Takahashi et al. 2003). The histamine produced has been associated with an incident of scombroid fish poisoning (Taylor et al. 1989). [Pg.68]

Figure 6.1 Histamine synthesis and metabolism in neurons. L-histidine is transported into neurons by the L-amino acid transporter. Once inside the neuron, L-histidine is converted into histamine by the specific enzyme histidine decarboxylase. Subsequently, histamine is taken up into vesicles by the vesicular monoamine transporter and stored there until released. In the absence of a high-affinity uptake mechanism in the brain, released histamine is rapidly degraded by histamine methyltransferase, which is located postsynaptically and in glia, to telemethylhistamine, a metabolite that does not show any histamine-like activity. Figure 6.1 Histamine synthesis and metabolism in neurons. L-histidine is transported into neurons by the L-amino acid transporter. Once inside the neuron, L-histidine is converted into histamine by the specific enzyme histidine decarboxylase. Subsequently, histamine is taken up into vesicles by the vesicular monoamine transporter and stored there until released. In the absence of a high-affinity uptake mechanism in the brain, released histamine is rapidly degraded by histamine methyltransferase, which is located postsynaptically and in glia, to telemethylhistamine, a metabolite that does not show any histamine-like activity.
Histamine synthesis in the brain is controlled by the availability of L-histidine and the activity of histidine decarboxylase. Although histamine is present in plasma, it does not penetrate the blood-brain barrier, such that histamine concentrations in the brain must be maintained by synthesis. With a value of 0.1 mmol/1 for L-histidine under physiological conditions, HDC is not saturated by histidine concentrations in the brain, an observation that explains the effectiveness of large systemic doses of this amino acid in raising the concentrations of histamine in the brain. The essential amino acid L-histidine is transported into the brain by a saturable, energy-dependent mechanism [5]. Subcellular fractionation studies show HDC to be localized in cytoplasmic fractions of isolated nerve terminals, i.e. synaptosomes. [Pg.254]

Like other peptides, the ability of SP to stimulate histamine release is closely related to its ability to mobilize Ca from a cellular pool and to the basic and the hydrophobic properties of its N-terminal and C-terminal amino acids, respectively. In this regard, intact SP (SP, n) is more active than the N-terminal tetrapeptide (SP8 n) with SP,, giving a half-maximal response at 8 x 10 6M and 1 x 10 5 M producing some 40% release [99], The C-terminal heptapeptide, SP, 6 was inactive [99],... [Pg.156]

Figure 4.11. Comparison of the histamine-releasing activity of three fragments of SP with decreasing numbers of C-terminal amino acids 199] , SP, n O, SP, s A, SP, 7 , SP, s. Figure 4.11. Comparison of the histamine-releasing activity of three fragments of SP with decreasing numbers of C-terminal amino acids 199] , SP, n O, SP, s A, SP, 7 , SP, s.
In addition to the necessity for basic amino acids at the N-terminal region in eliciting mast cell histamine release, a stereospecific component to peptide action has been demonstrated [167], When the core peptide of corticotropin,... [Pg.175]

Histamine-releasing activity requires a cluster of basic amino acids at the N-terminal region [169], with at least two basic amino acids appearing to be essential [172, 174]. [Pg.176]

The C-terminal region must be predominantly hydrophobic, as increasing the hydrophobic nature by amino acid substitution slightly increases the histamine-releasing activity, while increasing the hydrophilic nature of the C-terminal decreases histamine-releasing activity [99, 169, 170-176]. [Pg.176]


See other pages where Histamine, amino acid is mentioned: [Pg.83]    [Pg.321]    [Pg.83]    [Pg.321]    [Pg.68]    [Pg.47]    [Pg.518]    [Pg.260]    [Pg.525]    [Pg.590]    [Pg.156]    [Pg.489]    [Pg.87]    [Pg.1219]    [Pg.433]    [Pg.20]    [Pg.432]    [Pg.491]    [Pg.386]    [Pg.557]    [Pg.257]    [Pg.165]    [Pg.172]    [Pg.173]    [Pg.174]    [Pg.174]    [Pg.175]    [Pg.176]    [Pg.458]    [Pg.2]    [Pg.12]    [Pg.1074]    [Pg.1079]   


SEARCH



Histamine, amino acid decarboxylation

© 2024 chempedia.info