Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Inotropic effect

Other stmctural variations in both series are the stereochemistry at C3 and the degree of oxidation on the nucleus and side chains. Cardiac steroids probably exert their inotropic effects by acting as specific, noncompetitive inhibitors of — ATPases, known as sodium pumps, and thus... [Pg.423]

Verapamil. Verapamil hydrochloride is a pbenyl alkyl amine and is considered the prototype of the Class I calcium channel blockers. Verapamil is also a potent inhibitor of coronary artery spasm and is useful in Prinzmetal s angina and in unstable angina at rest. Verapamil produces negative chronotropic and inotropic effects. These two actions reduce myocardial oxygen consumption and probably account for the effectiveness of verapamil in chronic stable effort angina (98,99). Moreover, verapamil is an effective antihypertensive agent. [Pg.126]

The use of selective P-antagonists for treatment of CHF has included the P -blocker metoprolol (Table 1) and results of clinical trials suggest long-term beneficial effects. Selective P -antagonists have also been tested, an example of which is xamoterol [81801 -12-9], C2 H25N20, which is (i)-A/-(2-hydroxy-3-(4-hydroxyphenoxy)propylamino)ethylmorphine-4-carboxamide. Xamoterol exhibits approximately 50% of the activity of isoproterenol, and serves to provide modest inotropic effects (128,129). [Pg.129]

In high concentrations it blocks calcium channels and, thus, exerts prominent negative inotropic effects. Its adverse effects include proarrhythmic effects, worsening of heart failure and (due to (3-adrenoceptor blockade) bradycardia and bronchospasm. [Pg.100]

Class II drugs are classical (3-adrenoceptor antagonists such as propranolol, atenolol, metoprolol or the short-acting substance esmolol. These drugs reduce sinus rate, exert negative inotropic effects and slow atrioventricular conduction. Automaticity, membrane responsiveness and effective refractory period of Purkinje fibres are also reduced. The typical extracardiac side effects are due to (3-adrenoceptor blockade in other organs and include bronchospasm, hypoglycemia, increase in peripheral vascular resistance, depressions, nausea and impotence. [Pg.100]

Class II antiarrhythmic drugs are (3-adrenoceptor antagonists such as propranolol, metoprolol or atenolol. (3-adrenoceptor antagonists slow sinus rate and atrioventricular conduction and exert negative inotropic effects. [Pg.102]

Class IV antiarrhythmic drugs are Ca2+ channel blockers, which predominantly slow sinus rate and atrioventricular conduction and thus are used in the treatment of supraventricular tachyarrhythmias. These drugs exert a pronounced negative inotropic effect. [Pg.102]

Inhibition of the Na+/K+-ATPase leads to a loss of potassium and an increase of sodium within the cell. Secondary intracellular calcium is increased via the Na VCa -exchanger. This results in a positive inotropic effect in the myocardium, with an increase of peak force and a decrease in time to peak tension. Besides this, cardiac glycosides increase vagal activity by effects on the central vagal nuclei, the nodose ganglion and increase in sensitivity of the sinus node to acetylcholine. [Pg.325]

Hi-receptors in the adrenal medulla stimulates the release of the two catecholamines noradrenaline and adrenaline as well as enkephalins. In the heart, histamine produces negative inotropic effects via Hr receptor stimulation, but these are normally masked by the positive effects of H2-receptor stimulation on heart rate and force of contraction. Histamine Hi-receptors are widely distributed in human brain and highest densities are found in neocortex, hippocampus, nucleus accumbens, thalamus and posterior hypothalamus where they predominantly excite neuronal activity. Histamine Hrreceptor stimulation can also activate peripheral sensory nerve endings leading to itching and a surrounding vasodilatation ( flare ) due to an axonal reflex and the consequent release of peptide neurotransmitters from collateral nerve endings. [Pg.589]

The histamine H2-receptor (359 amino acids) is best known for its effect on gastric acid secretion. Histamine H2-receptor activation, in conjunction with gastrin and acetylcholine from the vagus, potently stimulate acid secretion from parietal cells. High concentrations of histamine are also present in cardiac tissues and can stimulate positive chronotropic and inotropic effects via H2-receptor stimulation and activation of adenylyl... [Pg.589]

The general picture of muscle contraction in the heart resembles that of skeletal muscle. Cardiac muscle, like skeletal muscle, is striated and uses the actin-myosin-tropomyosin-troponin system described above. Unlike skeletal muscle, cardiac muscle exhibits intrinsic rhyth-micity, and individual myocytes communicate with each other because of its syncytial nature. The T tubular system is more developed in cardiac muscle, whereas the sarcoplasmic reticulum is less extensive and consequently the intracellular supply of Ca for contraction is less. Cardiac muscle thus relies on extracellular Ca for contraction if isolated cardiac muscle is deprived of Ca, it ceases to beat within approximately 1 minute, whereas skeletal muscle can continue to contract without an extraceUular source of Ca +. Cyclic AMP plays a more prominent role in cardiac than in skeletal muscle. It modulates intracellular levels of Ca through the activation of protein kinases these enzymes phosphorylate various transport proteins in the sarcolemma and sarcoplasmic reticulum and also in the troponin-tropomyosin regulatory complex, affecting intracellular levels of Ca or responses to it. There is a rough correlation between the phosphorylation of Tpl and the increased contraction of cardiac muscle induced by catecholamines. This may account for the inotropic effects (increased contractility) of P-adrenergic compounds on the heart. Some differences among skeletal, cardiac, and smooth muscle are summarized in... [Pg.566]

Treatment with nondihydropyridine calcium channel blockers (diltiazem and verapamil) may worsen HF and increase the risk of death in patients with advanced LV dysfunction due to their negative inotropic effects. Conversely, dihydropyridine calcium channel blockers, although negative inotropes in vitro, do not appear to decrease contractility in vivo. Amlodipine and felodipine are the two most extensively studied dihydropyridine calcium channel blockers for systolic H F.39 4() These two agents have not been shown to affect patient survival, either positively or negatively. As such, they are not routinely recommended as part of a standard HF regimen however, amlodipine and felodipine can safely be used... [Pg.50]

Current data suggest little benefit on clinical outcomes beyond symptom relief for calcium channel blockers in the setting of ACS.43 Moreover, the use of first-generation shortacting dihydropyridines, such as nifedipine, should be avoided because they appear to worsen outcomes through their negative inotropic effects, induction of reflex sympathetic activation, tachycardia, and increased myocardial ischemia.43 Therefore, calcium channel blockers should be avoided in the acute management of MI unless there is a clear symptomatic need or a contraindication to p-blockers. [Pg.99]

Because of their negative inotropic effects, /J-blockers should be started in very low doses with slow upward dose titration to avoid symptomatic worsening or acute decompensation. Patients should be titrated to target doses when possible to provide maximal survival benefits. However, even lower doses have benefits over placebo, so any dose is likely to provide some benefit. [Pg.100]

Dobutamine is a /Jj- and / -receptor agonist with some oq-agonist effects. The net vascular effect is usually vasodilation. It has a potent inotropic effect without producing a significant change in heart rate. Initial doses of 2.5 to 5 mcg/kg/min can be increased progressively to 20 mcg/kg/min on the basis of clinical and hemodynamic responses. [Pg.106]

Dopamine produces dose-dependent hemodynamic effects because of its relative affinity for cq-, /Jr, /J2-, and Dr (vascular dopaminergic) receptors. Positive inotropic effects mediated primarily by / -receptors become more prominent with doses of 2 to 5 mcg/kg/min. At doses between 5 to 10 mcg/kg/min, chronotropic and -mediated vasoconstricting effects become more prominent. Especially at higher doses, dopamine alters several parameters that increase myocardial oxygen demand and potentially decrease myocardial blood flow, worsening ischemia in some patients with coronary artery disease. [Pg.107]


See other pages where Inotropic effect is mentioned: [Pg.126]    [Pg.126]    [Pg.126]    [Pg.128]    [Pg.188]    [Pg.98]    [Pg.205]    [Pg.115]    [Pg.99]    [Pg.568]    [Pg.195]    [Pg.304]    [Pg.328]    [Pg.169]    [Pg.40]    [Pg.48]    [Pg.49]    [Pg.57]    [Pg.58]    [Pg.78]    [Pg.80]    [Pg.99]    [Pg.117]    [Pg.74]    [Pg.96]    [Pg.187]    [Pg.188]    [Pg.190]    [Pg.235]    [Pg.102]    [Pg.107]   
See also in sourсe #XX -- [ Pg.566 ]

See also in sourсe #XX -- [ Pg.581 , Pg.591 , Pg.603 , Pg.692 ]




SEARCH



Calcium channel blockers negative inotropic effects

Inotropes

Inotropes adverse effects

Inotropism

Muscle negative inotropic effects

Negative inotropic effect

Papillary muscle negative inotropic effects

Positive inotropic effect

© 2024 chempedia.info