Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

High-Pressure Ammonia Conversion

When produced from natural gas the synthesis gas will be impure, containing up to 5 per cent inerts, mainly methane and argon. The reaction equilibrium and rate are favoured by high pressure. The conversion is low, about 15 per cent and so, after removal of the ammonia produced, the gas is recycled to the converter inlet. A typical process would consist of a converter (reactor) operating at 350 bar a refrigerated system to condense out the ammonia product from the recycle loop and compressors to compress the feed and recycle gas. A purge is taken from the recycle loop to keep the inert concentration in the recycle gas at an acceptable level. [Pg.192]

TVA Process (Refs 85, 93 102). In 1933 the Tennessee Valley Authority inherited a World War I plant designed to produce ammonia by a roundabout and obsolete method in the following steps first the manuf of lime and subsequently f a carbide, then Ca cyan amide, ammonia, nitric acid and finally AN. In 1940 a modern high-pressure ammonia plant was constructed, in which there were used an improved ammonia synthesis cataiysr and a water-gas conversion catalyst. During WW II, the TVA produced... [Pg.315]

SYN 6.51 35 high-pressure ammonia synthesis reactor heat loss 1.09 MW the reactor is assumed to produce the total pressure drop of the ammonia plant i.e. from stream 32 to 1 2 the actual conversion is 1 6.3 of the real gas equilibrium at 673 K and 2l 0 bar... [Pg.124]

Urea melt is fed into the reactor and is atomized by spray nozzles with the aid of high-pressure ammonia. The reactor is a fluidized bed gas reactor using silica/aluminium oxide as catalyst. The reaction offgas, an ammonia and carbon dioxide mixture, is preheated and is used as fluidizing gas. Conversion of urea to melamine is an endothermic reaction the necessary heat is supplied via heated molten salt circulated through internal heating coils. [Pg.161]

Pollution Prevention. Procedures haven been developed for recovery of composite ammonium perchlorate propellant from rocket motors, and the treatment of scrap and recovered propellant to reclaim ingredients. These include the use of high pressure water jets or compounds such as ammonia, which form fluids under pressure at elevated temperature, to remove the propellant from the motor, extraction of the ammonium perchlorate with solvents such as water or ammonia as a critical fluid, recrystalli2ation of the perchlorate and reuse in composite propellant or in slurry explosives or conversion to perchloric acid (166,167). [Pg.50]

However, BASF developed a two-step process (25). After methyl formate [107-31-3] became available in satisfactory yields at high pressure and low temperatures, its conversion to formamide by reaction with ammonia gave a product of improved quaUty and yield in comparison with the earlier direct synthesis. [Pg.508]

Dual-Pressure Process. Dual-pressure processes have a medium pressure (ca 0.3—0.6 MPa) front end for ammonia oxidation and a high pressure (1.1—1.5 MPa) tail end for absorption. Some older plants still use atmospheric pressure for ammonia conversion. Compared to high monopressure plants, the lower oxidation pressure improves ammonia yield and catalyst performance. Platinum losses are significantiy lower and production mns are extended by a longer catalyst life. Reduced pressure also results in weaker nitric acid condensate from the cooler condenser, which helps to improve absorber performance. Due to the spHt in operating conditions, the dual-pressure process requires a specialized stainless steel NO compressor. [Pg.41]

These pioneers understood the interplay between chemical equiUbrium and reaction kinetics indeed, Haber s research, motivated by the development of a commercial process, helped to spur the development of the principles of physical chemistry that account for the effects of temperature and pressure on chemical equiUbrium and kinetics. The ammonia synthesis reaction is strongly equiUbrium limited. The equiUbrium conversion to ammonia is favored by high pressure and low temperature. Haber therefore recognized that the key to a successful process for making ammonia from hydrogen and nitrogen was a catalyst with a high activity to allow operation at low temperatures where the equiUbrium is relatively favorable. [Pg.161]

The performance of many metal-ion catalysts can be enhanced by doping with cesium compounds. This is a result both of the low ionization potential of cesium and its abiUty to stabilize high oxidation states of transition-metal oxo anions (50). Catalyst doping is one of the principal commercial uses of cesium. Cesium is a more powerflil oxidant than potassium, which it can replace. The amount of replacement is often a matter of economic benefit. Cesium-doped catalysts are used for the production of styrene monomer from ethyl benzene at metal oxide contacts or from toluene and methanol as Cs-exchanged zeofltes ethylene oxide ammonoxidation, acrolein (methacrolein) acryflc acid (methacrylic acid) methyl methacrylate monomer methanol phthahc anhydride anthraquinone various olefins chlorinations in low pressure ammonia synthesis and in the conversion of SO2 to SO in sulfuric acid production. [Pg.378]

Only one melamine molecule is formed from six urea molecules, whilst three molecules of ammonia carbamate are formed. Whilst this can be recycled to urea the conversion from urea to melamine per cycle is at most 35%. Both the main route and the recycling operation involve high pressures and the low process efficiency offsets some of the apparent economic attractions of the route compared to those from dicy . [Pg.682]

At a pressure of 30 bar and with excess steam the fractional conversion of methane in the reformer is reasonably satisfactory. The high pressure of 30 bar will favour the removal of carbon dioxide, following the shift reaction CO + H2O CO2 + H2, and reduce the cost of compressing the purified hydrogen to a value, typically in the range 50-200 bar, required for ammonia synthesis. [Pg.253]

With the technical development achieved in the last 30 years, pressure has become a common variable in several chemical and biochemical laboratories. In addition to temperature, concentration, pH, solvent, ionic strength, etc., it helps provide a better understanding of structures and reactions in chemical, biochemical, catalytic-mechanistic studies and industrial applications. Two of the first industrial examples of the effect of pressure on reactions are the Haber process for the synthesis of ammonia and the conversion of carbon to diamond. The production of NH3 and synthetic diamonds illustrate completely different fields of use of high pressures the first application concerns reactions involving pressurized gases and the second deals with the effect of very high hydrostatic pressure on chemical reactions. High pressure analytical techniques have been developed for the majority of the physicochemical methods (spectroscopies e. g. NMR, IR, UV-visible and electrochemistry, flow methods, etc.). [Pg.81]

This may appear to be a simple process, but in fact it is difficult to carry out because the equilibrium is not very favorable. High pressures (150-200 atm) are required to get a reasonable conversion, and high temperatures (430-510°) are necessary to get reasonable reaction rates. A catalyst, usually iron oxide, also is required. The reaction is very important because ammonia is used in ever-increasing amounts as a fertilizer either directly or through conversion to urea or ammonium salts. [Pg.410]

CSTR for most reactions. These conditions are best met for short residence times where velocity profiles in the tubes can be maintained in the turbulent flow regime. In an empty tube this requires high flow rates for packed columns the flow rates need not be as high. Noncatalytic reactions performed in PFRs include high-pressure polymerization of ethylene and naphtha conversion to ethylene. A gas-liquid noncatalytic PFR is used for adipinic nitrile production. A gas-solid PFR is a packed-bed reactor (Section IV). An example of a noncatalytic gas-solid PFR is the convertor for steel production. Catalytic PFRs are used for sulfur dioxide combustion and ammonia synthesis. [Pg.466]

Table 6-5 shows the conditions for which NH3 production is possible. Both low temperatures or very high pressures achieve favorable equilibrium. At 25°C, the equilibrium constant is very high, while at higher temperatures, both Keq and PNH3 decrease rapidly. Generally, ammonia synthesis reactors operate at about 350°C and 200 atm with an equilibrium conversion of about 70% in each pass. The NH3 is separated from unreacted H2 and N2, which are recycled back to the reactor. For the overall process involving the tubular reactor, separation and recycle produce about 100% ammonia conversion. [Pg.482]


See other pages where High-Pressure Ammonia Conversion is mentioned: [Pg.80]    [Pg.80]    [Pg.10]    [Pg.315]    [Pg.315]    [Pg.315]    [Pg.37]    [Pg.479]    [Pg.1]    [Pg.148]    [Pg.566]    [Pg.38]    [Pg.42]    [Pg.342]    [Pg.350]    [Pg.352]    [Pg.409]    [Pg.327]    [Pg.267]    [Pg.566]    [Pg.18]    [Pg.39]    [Pg.566]    [Pg.563]    [Pg.653]    [Pg.803]    [Pg.409]    [Pg.239]    [Pg.240]    [Pg.218]    [Pg.221]    [Pg.224]   


SEARCH



Ammonia pressure

High-pressure conversion

© 2024 chempedia.info