Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

High monolithic columns

High performance monolithic columns were prepared from styrene and divinyl-benzene (PSDVB, 200 pm i.d.) (Oberacher et al., 2004). The monoliths possess 5-300 nm pores with porosity of ca. 50% and 20% for external and internal pores, respectively, with specific surface areas of 30-40 m2/g. The column showed permeability K= 3.5 x 10 15m2 in water and slightly less in acetonitrile. The pore size... [Pg.149]

Polymer monolithic columns with small diameter have been successfully employed for proteome analysis. Karger and coworkers reported MALDI-TOF of separated fractions spotted on a plate from a polymeric reversed-phase column that showed high peak capacity (Chen et al., 2005). Huber and coworkers reported separation and detection of about 200 peaks within 5 min by using a PSDVB column (Premstaller et al., 2001). [Pg.152]

In a sense each monolithic column is unique, or produced as a product of a separate batch, because the columns are prepared one by one by a process including monolith formation, column fabrication, and chemical modification. Reproducibility of Chro-molith columns has been examined, and found to be similar to particle-packed-silica-based columns of different batches (Kele and Guiochon, 2002). Surface coverage of a Chromolith reversed-phase (RP) column appears to be nearly maximum, but greater silanol effects were found for basic compounds and ionized amines in buffered and nonbuffered mobile phases than advanced particle-packed columns prepared from high purity silica (McCalley, 2002). Small differences were observed between monolithic silica columns derived from TMOS and those from silane mixtures for planarity in solute structure as well as polar interactions (Kobayashi et al., 2004). [Pg.157]

Volmer, D.A., Brombacher, S., Whitehead, B. (2002). Studies on azaspiracid biotoxins. I. Ultrafast high-resolution liquid chromatography/mass spectrometry separations using monolithic columns. Rapid Commun. Mass Spectrom. 16, 2298-2305. [Pg.176]

Current commercial silica-based columns have two important characteristics (1) they can produce efficiency similar to that of columns packed with 3.5 /tm particles and (2) they typically produce a pressure drop of half that caused by a column packed with 5 /tm particles.35 Monolithic columns have been shown to exhibit flat van Deemter curves, resulting in little loss of efficiency at high flow rates.36 As a result, high-throughput separations on conventional HPLC instruments can be achieved by increasing flow rate up to nine times (up to 9 ml/min) the usual rate in a conventional packed column. Cycle times for HPLC analysis as short as 1 min (injection-to-injection) have been reported by users of monolithic columns. Additional benefits of monolithic columns cited include... [Pg.257]

Reproducibility of monolithic columns has also been cited as a major concern because the monoliths are manufactured individually.34-35 An extensive study by Kele and Guiochon indicates that the reproducibility results of Chromolith columns were almost comparable to those from different batches of particle-packed columns.37 Other drawbacks of monolithic columns include weak reten-tivity for polar analytes,38 efficiency loss at high flow rates for larger (800 MW) molecules,39 and peak tailing, even for neutral non-ionizable compounds.36-38-40 Furthermore, silica-based monolithic... [Pg.258]

Asperger A. et al., 2002. Trace determination of priority pesticide in water by means of high-speed online solid-phase extraction-liquid chromatography-tandem mass spectrometry using turbulent-flow chromatography columns for enrichment and a short monolithic column for fast liquid chromatographic separation. J Chromatogr A 960 109. [Pg.293]

Zeng H., Deng Y., and Wu J., 2003a. Fast analysis using monolithic columns coupled with high-flow online extraction and electrospray mass spectrometric detection for the direct and simultaneous quantitation of multiple components in plasma. J Chromatogr B 788 331. [Pg.297]

HPLC has high-throughput capability when it can simultaneously determine multiple drugs and their metabolites or when coupled with a unique monolithic column or sample preparation technique. Some examples are summarized below. [Pg.302]

In more demanding separations that require higher plate counts, specially designed rapid analysis columns packed with very high efficiency 2 to 3 /.an porous particles are available from several manufacturers. In addition, monolithic columns with improved flow-through characteristics are also commercially available. Figure 13.4 depicts a comparison of inlet pressure and flow rate for 4.6 mm inner diameter x 50, 100, and 150 mm columns packed with 5 /an particles. [Pg.343]

Several research groups used another interesting column technology as an alternative to the modification of the capillary surface. This method is inherited from the field of electrophoresis of nucleic acids and involves capillaries filled with solutions of linear polymers. In contrast to the monolithic columns that will be discussed later in this review, the preparation of these pseudostationary phases need not be performed within the confines of the capillary. These materials, typically specifically designed copolymers [85-88] and modified den-drimers [89], exist as physically entangled polymer chains that effectively resemble highly swollen, chemically crosslinked gels. [Pg.25]

This technology was extended to the preparation of chiral capillary columns [ 138 -141 ]. For example, enantioselective columns were prepared using a simple copolymerization of mixtures of O-[2-(methacryloyloxy)ethylcarbamoyl]-10,11-dihydro quinidine, ethylene dimethacrylate, and 2-hydroxyethyl methacrylate in the presence of mixture of cyclohexanol and 1-dodecanol as porogenic solvents. The porous properties of the monolithic columns can easily be controlled through changes in the composition of this binary solvent. Very high column efficiencies of 250,000 plates/m and good selectivities were achieved for the separations of numerous enantiomers [140]. [Pg.35]

Fig. 12. Purification of pDNA using the CIM DEAE Disk Monolithic Column. The pDNA containing HIC pool is loaded onto the CIM column. The main peak (Eluate pool) contains highly purified pDNA (> 95% ccc)... Fig. 12. Purification of pDNA using the CIM DEAE Disk Monolithic Column. The pDNA containing HIC pool is loaded onto the CIM column. The main peak (Eluate pool) contains highly purified pDNA (> 95% ccc)...
Excellent performance for the elution of another peptide, insulin (molecular weight 5800 g/mol), was also observed using silica-based monoliths. The efficiency of the monolithic column was much better than that of a column packed with beads, and did not change much even at high flow rates. [Pg.114]


See other pages where High monolithic columns is mentioned: [Pg.83]    [Pg.65]    [Pg.294]    [Pg.380]    [Pg.236]    [Pg.237]    [Pg.240]    [Pg.732]    [Pg.147]    [Pg.156]    [Pg.157]    [Pg.157]    [Pg.160]    [Pg.171]    [Pg.76]    [Pg.257]    [Pg.258]    [Pg.259]    [Pg.270]    [Pg.272]    [Pg.284]    [Pg.284]    [Pg.299]    [Pg.315]    [Pg.322]    [Pg.325]    [Pg.343]    [Pg.347]    [Pg.34]    [Pg.51]    [Pg.63]    [Pg.71]    [Pg.111]    [Pg.112]    [Pg.114]    [Pg.121]    [Pg.122]   
See also in sourсe #XX -- [ Pg.59 , Pg.60 ]




SEARCH



High columns

© 2024 chempedia.info