Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

High-impact polyethylene

The shells of the cooling towers shown in Figure 8.1 are constructed of polyethylene. Table 8.3 summarizes some of the properties of high-impact polyethylene. This plastic is also employed in constructing fill packing. Table 8.4 also gives chemical resistance information on various plastic resins. [Pg.199]

Table 8.3 High-Impact Polyethylene Properties (courtesy of Delta Cooling Towers, Carborundum Corp., Fairfield, NJ)... Table 8.3 High-Impact Polyethylene Properties (courtesy of Delta Cooling Towers, Carborundum Corp., Fairfield, NJ)...
Laboratory tests indicated that gamma radiation treatment and cross-linking using triaHylcyanurate or acetylene produced a flexible recycled plastic from mixtures of polyethylene, polypropylene, general-purpose polystyrene, and high impact grade PS (62). [Pg.232]

Structural Components. In most appHcations stmctural foam parts are used as direct replacements for wood, metals, or soHd plastics and find wide acceptance in appHances, automobUes, furniture, materials-handling equipment, and in constmction. Use in the huil ding and constmction industry account for more than one-half of the total volume of stmctural foam appHcations. High impact polystyrene is the most widely used stmctural foam, foUowed by polypropylene, high density polyethylene, and poly(vinyl chloride). The constmction industry offers the greatest growth potential for ceUular plastics. [Pg.416]

Polypropylene polymers are typically modified with ethylene to obtain desirable properties for specific applications. Specifically, ethylene—propylene mbbers are introduced as a discrete phase in heterophasic copolymers to improve toughness and low temperature impact resistance (see Elastomers, ETHYLENE-PROPYLENE rubber). This is done by sequential polymerisation of homopolymer polypropylene and ethylene—propylene mbber in a multistage reactor process or by the extmsion compounding of ethylene—propylene mbber with a homopolymer. Addition of high density polyethylene, by polymerisation or compounding, is sometimes used to reduce stress whitening. In all cases, a superior balance of properties is obtained when the sise of the discrete mbber phase is approximately one micrometer. Examples of these polymers and their properties are shown in Table 2. Mineral fillers, such as talc or calcium carbonate, can be added to polypropylene to increase stiffness and high temperature properties, as shown in Table 3. [Pg.409]

To complete the assembly of a cell, the interleaved electrode groups are bolted to a cov er and the cover is sealed to a container. Originally, nickel-plated steel was the predominant material for cell containers but, more recently plastic containers have been used for a considerable proportion of pocket nickel-cadmium cells. Polyethylene, high impact polystyrene, and a copolymer of propylene and ethylene have been the most widely used plastics. [Pg.547]

Covers for the battery designs in Figures 1 and 2 are typically molded from materials identical to that of the respective case, and vent plugs are frequentiy made of molded polypropylene. Other combinations are possible, eg, containers molded of polyethylene or polypropylene may be mated with covers of high impact mbber for use in industrial batteries. After the cover is fitted over the terminal post, it is sealed onto the case. The cover is heat bonded to the case, if it is plastic it is sealed with an epoxy resin or other adhesive, if it is vulcanized mbber. Vent caps are usually inserted into the cover s acid fiU holes to faciHtate water addition and safety vent gasses, except for nonaccessible maintenance-free or recombinant batteries. In nonaccessible batteries, the vent is fabricated as part of the cover. [Pg.578]

In the mid-1950s a number of new thermoplastics with some very valuable properties beeame available. High-density polyethylenes produced by the Phillips process and the Ziegler process were marketed and these were shortly followed by the discovery and rapid exploitation of polypropylene. These polyolefins soon became large tonnage thermoplastics. Somewhat more specialised materials were the acetal resins, first introduced by Du Pont, and the polycarbonates, developed simultaneously but independently in the United States and Germany. Further developments in high-impact polystyrenes led to the development of ABS polymers. [Pg.8]

Around Izod notch Low-density polyethylene Ethylene-propylene block copolymers Cellulose nitrate and propionate ABS and high-impact polystyrene Bis-phenol A polycarbonate... [Pg.191]

Thermoplastic chlorinated polyethylenes are seldom used on their own but primarily in blends with other polymers, particularly PVC. If chlorination is taken to a level at which the polymer is only semi-compatible with the PVC, a blend with high impact strength may be obtained. In these circumstances the material is classified as an impact modifier. [Pg.240]

The homopolymer finds a variety of uses, as an adhesive component, as a base for chewing gum, in caulking compounds, as a tackifier for greases, in tank linings, as a motor oil additive to provide suitable viscosity characteristics and to improve the environmental stress-cracking resistance of polyethylene. It has been incorporated in quantities of up to 30% in high-density polyethylene to improve the impact strength of heavy duty sacks. [Pg.270]

The process was originally developed in the 1940s for use with vinyl plas-tisols in liquid form. It was not until the 1950s that polyethylene powders were successfully moulded in this way. Nowadays a range of materials such as nylon, polycarbonate, ABS, high impact polystyrene and polypropylene can be moulded but by far the most common material is polyethylene. [Pg.318]

The radius of the notch is quite important, particularly for plastics. For example, polyvinyl chloride (PVC) is a notch-sensitive material. If the notch is blunt (2-mm radius), the impact strength is higher than that for ABS. If the notch is sharp (0.25-mm radius), the impact strength of PVC is lower than that for ABS. Other polymers that are notch brittle are high-density polyethylene (HDPE), polypropylene (PP), polyethylene teraphthalate (PET), dry polyamides (PAs), and acetals. [Pg.449]

Glass-filled, toughened polyethylene terephthalate) (PET) resins can be readily moulded into highly impact-resistant structural parts for appliances and automotive components. The PET-based compounds are also suitable for construction (e.g. as structural members), equipment housings (e.g. printer and copier parts), agricultural applications (e.g. mower and tractor engine covers), materials handling (e.g. pallets and trays), furniture (e.g. office chair bases), as well as electrical and electronic applications. [Pg.495]

MULTIPLE-IMPACT PERFORMANCE OF HIGH-DENSITY POLYETHYLENE FOAM... [Pg.111]

Although some polymers may be satisfactory when used under the stress of static loads, they may fail when subjected to impact. The impact resistance, or resistance to brittle fracture, is a function of the molecular weight of a polymer. Thus uhmwpe is much more resistant to impact failure than general purpose high-density polyethylene (hdpe). The impact resistance of brittle polymers is also increased by the addition of plasticizers. Thus polyvinyl chloride (PVC), plasticized by relatively large amounts of dioctyl phthalate, is much less brittle than unplasticized rigid PVC. [Pg.59]

PBDEs are used in different resins, polymers, and substrates at levels ranging from 5 to 30% by weight (EU 2001). Plastic materials that utilize PBDEs as flame retardants include ABS polyacrylonitrile (PAN) polyamide(PA) polybutylene terephthalate (PBT) polyethylene (PE) cross-linked polyethylene (XPE) polyethylene terephthalate (PET) polypropylene (PP) polystyrene (PS) high-impact polystyrene (HIPS) polyvinyl chloride (PVC) polyurethane (PUR) and unsaturated polyester (UPE). These polymers and examples of their final products are summarized inTable 5-2 (Hardy 2002 WHO 1994a). [Pg.310]

Nowadays, the leading two polyolefin companies are producing more than 20 million metric tons of polyethylene (PE) and polypropylene (PP) annually. This is about 35% of the world production of all POs. The demand for high impact polypropylene HIPP, and linear low density polyethylene, LLDPE, especially (see Fig. 5.4-2) is permanently growing at about 7% per year. "Distance holders", such as the methyl groups and the butene branch shown in Fig. 5.4-2, help to control the degree of crystallinity, and consequently the processability. [Pg.337]


See other pages where High-impact polyethylene is mentioned: [Pg.454]    [Pg.303]    [Pg.408]    [Pg.418]    [Pg.421]    [Pg.142]    [Pg.442]    [Pg.336]    [Pg.244]    [Pg.410]    [Pg.426]    [Pg.150]    [Pg.483]    [Pg.647]    [Pg.682]    [Pg.341]    [Pg.433]    [Pg.469]    [Pg.330]    [Pg.57]    [Pg.298]    [Pg.474]    [Pg.152]    [Pg.179]    [Pg.697]    [Pg.174]    [Pg.43]    [Pg.336]    [Pg.142]   
See also in sourсe #XX -- [ Pg.200 ]




SEARCH



HIGH IMPACT

© 2024 chempedia.info