Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

High-density polyethylene oxidation

Second, in the early 1950s, Hogan and Bank at Phillips Petroleum Company, discovered (3,4) that ethylene could be catalyticaHy polymerized into a sohd plastic under more moderate conditions at a pressure of 3—4 MPa (435—580 psi) and temperature of 70—100°C, with a catalyst containing chromium oxide supported on siUca (Phillips catalysts). PE resins prepared with these catalysts are linear, highly crystalline polymers of a much higher density of 0.960—0.970 g/cnr (as opposed to 0.920—0.930 g/cnf for LDPE). These resins, or HDPE, are currentiy produced on a large scale, (see Olefin polymers, HIGH DENSITY POLYETHYLENE). [Pg.367]

High Density Polyethylene. High density polyethylene (HDPE), 0.94—0.97 g/cm, is a thermoplastic prepared commercially by two catalytic methods. In one, coordination catalysts are prepared from an aluminum alkyl and titanium tetrachloride in heptane. The other method uses metal oxide catalysts supported on a carrier (see Catalysis). [Pg.327]

Low pressure (0.1 to 20 MPa) and temperatures of 50 to 300°C using heterogeneous catalysts such as molybdenum oxide or chromium oxide supported on inorganic carriers to produce high density polyethylene (HDPE), which is more linear in nature, with densities of 0.94 to 0.97 g/cm. ... [Pg.432]

In broad tonnage terms the injection moulding markets for high-density polyethylene and polypropylene are very similar. The main reasons for selecting polypropylene have been given above. In favour of HDPE is the inherently better oxidation and ultraviolet resistance. Whilst these properties may be greatly improved in polypropylene by the use of additives these may increase the cost of polypropylene compounds to beyond that which is considered economically attractive. It is for this reason that HDPE has retained a substantial part of the crate market. [Pg.266]

Pdlysulphortes High-density polyethylene ftilyphenyiene oxide Propylene -ethylene copolymers ABS... [Pg.154]

High-density polyethylene (HDPE) is produced by a low-pressure process in a fluid-bed reactor. Catalysts used for HDPE are either of the Zieglar-type (a complex of A1(C2H5)3 and a-TiCl4) or silica-alumina impregnated with a metal oxide such as chromium oxide or molybdenum oxide. [Pg.327]

A small number of companies use metal oxide catalysts, such as the example shown in Fig. 18.6, to make high density polyethylene. The polyethylene made with this catalyst generally has a narrower molecular weight distribution than high density polyethylene made with Ziegler-Natta catalysts. [Pg.291]

Figure 11 Mid-infrared transmission spectra recorded from a linear (high-density) polyethylene before, during and after oxidation at 145°C (a) OH stretching region, (b) carbonyl stretching region. Reproduced from Luongo [23]. Copyright 1960 John Wiley Sons, Inc. Figure 11 Mid-infrared transmission spectra recorded from a linear (high-density) polyethylene before, during and after oxidation at 145°C (a) OH stretching region, (b) carbonyl stretching region. Reproduced from Luongo [23]. Copyright 1960 John Wiley Sons, Inc.
Small areas Ventilate to remove the vapors. If decomposition to arsenic metal or arsenic oxides has occurred, wash the area with copious amounts of soap and water. Collect and containerize the rinseate in containers lined with high-density polyethylene. [Pg.251]

Small areas Ventilate to remove the vapors. If deemed necessary, wash the area with copious amounts of soap and water. Collect and place into containers lined with high-density polyethylene. If necessary, an aqueous solution containing a mild oxidant can be used (see Section 15.5.3.1). Removal of porous material, including painted surfaces, may be required because agents that have been absorbed into these materials may migrate back to the surface and pose a contact hazard. [Pg.443]

The high-density polyethylene is linear and can be manufactured by (i) coordination polymerisation of monomer by triethyl aluminium and tritanium chloride, (ii) polymerisation with supported Metal Oxide Catalysts. Such as chromium or molybdenum oxides supported over alumina-silica bases. [Pg.147]

Mixed C4 olefins (primarily iC4) are isolated from a mixed C olefin and paraffin stream. Two different liquid adsorption high-purity C olefin processes exist the C4 Olex process for producing isobutylene (iCf ) and the Sorbutene process for producing butene-1. Isobutylene has been used in alcohol synthesis and the production of methyl tert-butyl ether (MTBE) and isooctane, both of which improve octane of gasoHne. Commercial 1-butene is used in the manufacture of both hnear low-density polyethylene (LLDPE) and high-density polyethylene (HDPE)., polypropylene, polybutene, butylene oxide and the C4 solvents secondary butyl alcohol (SBA) and methyl ethyl ketone (MEK). While the C4 Olex process has been commercially demonstrated, the Sorbutene process has only been demonstrated on a pilot scale. [Pg.266]

The principal polyolefins are low-density polyethylene (ldpe), high-density polyethylene (hope), linear low-density polyethylene (lldpe), polypropylene (PP), polyisobutylene (PIB), poly-1-butene (PB), copolymers of ethylene and propylene (EP), and proprietary copolymers of ethylene and alpha olefins. Since all these polymers are aliphatic hydrocarbons, the amorphous polymers are soluble in aliphatic hydrocarbon solvents with similar solubility parameters. Like other alkanes, they are resistant to attack by most ionic and most polar chemicals their usual reactions are limited to combustion, chemical oxidation, chlorination, nitration, and free-radical reactions. [Pg.133]

Allyl Free Radicals. Ayscough and Evans (3) have recently studied, by ESR measurements, the types of allylic free radicals produced by gamma-irradiation of several monomeric olefins. In irradiated polyethylene the allyl free radical is quite stable, persisting for several months at room temperature (31). The presence of these allyl free radicals is most noticeable in the case of high density polyethylene, and this type of free radical is undoubtedly the cause of the slow oxidation of polyethylene at room temperature, which lasts for 40 or more days after irradiation (10). Williams and Dole (40) could observe little if any oxidation of low density polyethylene when it was exposed to air after irradiation. By oxidation we mean formation of carbonyl groups as detected by infrared absorption studies at 1725 cm"1. Parenthetically, it should be noted that adding an oxygen. molecule to a free radical produces initially another type of free radical, a peroxy free radical, but in this paper we shall not discuss free radicals of this or any other types except those of hydrocarbons. [Pg.47]

Parabens are approved for use in oral solution and suspensions at a concentration of 0.015% to 0.2% w/v. Due to their low solubility, the sodium salts of parabens are often used in aqueous formulations. The parabens are most effective in the pH range of 2 to 6, and their antimicrobial activity decreases with increasing pH. Additionally, they are very unstable at pH 8 or above in solution. Methyl paraben has also demonstrated incompatibility with sorbitol and may show some discoloration in the presence of iron. The absorption of methylparaben by plastics has been reported with the amount absorbed being dependent upon the type of plastic and vehicle. However, no absorption has been reported for low density polyethylene (LDPE) or high density polyethylene (HDPE) containers. Certain coloring agents such as yellow iron oxide, ultramarine blue, and aluminum silicate can extensively absorb ethyl paraben in simple aqueous systems, thus reducing its preservative efficacy. [Pg.171]

Film -use of microbial polysaccharides [MICROBIAL POLYSACCHARIDES] (Vol 16) -cellulose esters m [CELLULOSE ESTERS - ORGANIC ESTERS] (Vol 5) -drying of [DRYING] (Vol 8) -by extrusion [PLASTIC PROCESSING] (Vol 19) -ITOPE [OLEFIN POLYMERS - POLYETHYLENE - HIGH DENSITY POLYETHYLENE] (Vol 17) -from LDPE [OLEFIN POLYMERS - POLYETHYLENE - LOW DENSITY POLYETHYLENE] (Vol 17) -of LLDPE [OLEFIN POLYMERS - POLYETHYLENE - LINEAR LOW DENSITY POLYETHYLENE] (Vol 17) -of polyethylene oxide) [POLYETHERS - ETHYLENE OXIDE POLYMERS] (Vol 19) -of polystyrene [STYRENE PLASTICS] (Vol 22) -m printing processes [PRINTING PROCESSES] (Vol 20)... [Pg.402]


See other pages where High-density polyethylene oxidation is mentioned: [Pg.162]    [Pg.162]    [Pg.148]    [Pg.331]    [Pg.206]    [Pg.224]    [Pg.110]    [Pg.519]    [Pg.520]    [Pg.174]    [Pg.47]    [Pg.442]    [Pg.152]    [Pg.109]    [Pg.432]    [Pg.432]    [Pg.244]    [Pg.255]    [Pg.221]    [Pg.123]    [Pg.255]    [Pg.296]    [Pg.116]    [Pg.659]    [Pg.749]    [Pg.331]    [Pg.148]    [Pg.1136]   


SEARCH



Density oxidation

Density oxidizers

High density polyethylene photo-oxidative degradation

High oxidation

High-density polyethylen

High-density polyethylene

High-density polyethylene oxide catalyst

Polyethylene density

Polyethylene oxide

© 2024 chempedia.info