Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Heterogeneous reactions, definition kinetics

Riesenfeld and Bohnholtzer and Riesenfeld and Schumacher used ozone concentrated by liquefaction and distillation. From their kinetic measurements they conclude that a reaction of the second order and one of the first order take place simultaneously at quite low pressures, 6-60 mm. Hg the first order reaction predominates. The velocity constants of the second order reaction are not influenced by the total pressure, while those of the first order reaction appear to be inversely proportional to the total pressure. The figures given show that the first order reaction at the lower pressures is considerably influenced by the surface, and is quite probably a heterogeneous reaction, though the authors themselves do not consider this to be definitely shown. The decomposition appears to be rather sensitive to catalysts such as dust particles. [Pg.61]

We adopt this kinetic definition of reaction order without reference to the actual number of molecules involved in each act of chemical transformation. In homogeneous reactions the kinetically determined order is equal to the number of molecules participating in the actual change of which the rate is being measured. In heterogeneous reactions this equality is not necessarily preserved. It will be convenient to call the order inferred from the effect of pressure on the time of half-change the apparent order, and to refer to the number of molecules involved as the true order of the reaction. We have now to consider the relation of the true and the apparent order in various cases. ... [Pg.211]

This chapter covers the second fundamental concept used in chemical reaction engineering—chemical kinetics. The kinetic relationships used in the analysis and design of chemical reactors are derived and discussed. In Section 3.1, we discuss the various definitions of the species formation rates. In Section 3.2, we define the rates of chemical reactions and discuss how they relate to the formation (or depletion) rates of individual species. In Section 3.3, we discuss the rate expression that provides the relationship between the reaction rate, the temperature, and species concentrations. Without going into the theory of chemical kinetics, we review the common forms of the rate expressions for homogeneous and heterogeneous reactions. In the last section, we introduce and define a measure of die reaction rate—the characteristic reaction time. In Chapter 4 we use the characteristic reaction time to reduce the reactor design equations to dimensionless forms. [Pg.81]

Furthermore, for a large ratio of bulk metal ion concentration to the interfacial aqueous extractant concentration, the reaction zone is located vary close to the liquid-liquid interlace, and the extraction rate per unit area of interface becomes independent of the aqueous-film mass transfer coefficient as well as the system volume. Under these conditions a truly heterogeneous reaction and a homogeneous process are indistinguishable in the sarise that the rate of ench will be a definite fonction of reactant concentrations in the vicinity of the interface. In eithar case, tha foncdonal form of the kinetics aral its parameters must be determined experimentally,... [Pg.486]

Only visual inspection of the reaction solution was made. Since the metals used, i.e., Ru, Os, Ir, Co, are heterogeneous Fischer-Tropsch catalysts, definite proof of the homogeneity of these systems must await detailed spectroscopic and kinetic measurements. [Pg.75]

Description of polymerization kinetics in heterogeneous systems is complicated, even more so given that the structure of complex formed is not very well defined. In template polymerization we can expect that local concentration of the monomer (and/or initiator) can be different when compared with polymerization in the blank system. Specific sorption of the monomer by macromolecular coil leads to the increase in the concentration of the monomer inside the coil, changing the rate of polymerization. It is a problem of definition as to whether we can call such a polymerization a template reaction, if monomer is randomly distributed in the coil on the molecular level but not ordered by the template. [Pg.108]

Such transformations have been extensively studied in quenched steels, but they can also be found in nonferrous alloys, ceramics, minerals, and polymers. They have been studied mainly for technical reasons, since the transformed material often has useful mechanical properties (hard, stiff, high damping (internal friction), shape memory). Martensitic transformations can occur at rather low temperature ( 100 K) where diffusional jumps of atoms are definitely frozen, but also at much higher temperature. Since they occur without transport of matter, they are not of central interest to solid state kinetics. However, in view of the crystallographic as well as the elastic and even plastic implications, diffusionless transformations may inform us about the principles involved in the structural part of heterogeneous solid state reactions, and for this reason we will discuss them. [Pg.296]

In conclusion, it must be noted that the equations to describe the transient behaviour of heterogeneous catalytic reactions, usually have a small parameter e = Altsot/Alt t. Here Atsot = bsS = the number of active sites (mole) in the system and Nfot = bg V = gas quantity (mole). Of most importance is the solution asymptotes for kinetic equations at A/,tsot/7Vtflt - 0, 6S, bg and vin/S being constant. Here we deal with the parameter SjV which is readily controlled in experiments. The case is different for the majority of the asymptotes examined. The parameters with respect to which we examine the asymptotes are difficult for control. For example, we cannot, even in principle, provide an infinite increase (or decrease) of such a parameter as the density of active sites, bs. Moreover, this parameter cannot be varied essentially without radical changes in the physico-chemical properties of the catalyst. Quasi-stationarity can be claimed when these parameters lie in a definite range which does not depend on the experimental conditions. [Pg.164]

Table 10.2 presents the kinetic information for the main reactions, in which the frequency factors have been calculated from turnover-frequency (TOF) data [8, 9]. This term, borrowed from enzymatic catalysis, quantifies the specific activity of a catalytic center. By definition, TOF gives the number of molecular reactions or catalytic cycles occurring at a center per unit of time. For a heterogeneous catalyst the number of active centers can be found by means of sorption methods. Let us consider that the active sites are due to a metal atom. By definition [15] we have ... [Pg.291]

Adsorption on a solid catalyst surface, complex formation in homogeneous catalysis with metallo-organic complexes and in biocatalysis with enzymes share the same principle, i.e. the total number of sites is constant. Therefore, the rate expressions for reactions on heterogeneous, homogeneous and biocatalysts have a similar form. The constant number of active sites results in rate expressions that differ from homogeneous gas phase kinetics. Partial pressures are usually used in rate expressions for gas-phase reactions, while concentrations are used when the reactions take place in the liquid phase. It appears that definitions and nomenclature of particular kinetics constants in the different sub-communities differ sometimes. In the following sections the expressions used by the different subdisciplines will be compared and their conceptual basis outlined. [Pg.82]

Application of chemical theory to heterogeneous systems such as soils almost always comes in conflict with system complexity. Commonly used kinetic techniques are based on the assumption that the reactions are either unidirectional or discrete, but soil sorption reactions are often both reversible and multiple. The combination of multiple reversible reactions makes evaluation tedious and tenuous. It is seldom possible to be definitive in calculating rate coefficients attributed to a specific reaction. These difficulties are compounded by the difficulty of measuring reactants and products in a colloidal system and by the probability that reaction energy varies as the reaction proceeds. [Pg.138]

Finally, by definition, catalysis is purely a kinetic phenomenon. Many studies, directed at the elucidation of catalytic phenomena in both homogeneous and heterogeneous systems, emphasize the characterization of such systems and identification of the species present, by structural and spectroscopic methods. It is only to the extent that the results of such studies are related to the rates of the catalytic reactions through appropriate kinetic measurements that they are relevant to the catalytic process. This point is illustrated by... [Pg.30]

Essential features for catalytic reactions is the readiness in reduction/activation of heterogeneous catalysts and a possibility to utilize them in the needed geometrical form. Despite the strict definition of catalysis, which states, that the catalyst does not change during the catalytic reactions, some activity deterioration takes place and therefore measurements of catalytic kinetics should always monitor the catalyst activity. [Pg.12]

The reactions considered in the TC4 model are shown in Table 2. The model involves 6 adjustment parameters associated with heterogeneous kinetic constants (see reactions 1 to 6 in Table 2). The differential equations associated to the rate laws of the elementary reactions proposed in this study were solved by using a Fortran program developed by Braum and coworkers [3]. The kinetic constants from the homogeneous phase reactions were obtained from the National Institute of Standards and Technology (NIST) database [4] which the following kinetic constant definition holds ... [Pg.518]


See other pages where Heterogeneous reactions, definition kinetics is mentioned: [Pg.25]    [Pg.10]    [Pg.181]    [Pg.260]    [Pg.3]    [Pg.39]    [Pg.277]    [Pg.257]    [Pg.165]    [Pg.414]    [Pg.28]    [Pg.41]    [Pg.48]    [Pg.228]    [Pg.178]    [Pg.6]    [Pg.520]    [Pg.2]    [Pg.313]    [Pg.2]    [Pg.235]    [Pg.609]    [Pg.96]    [Pg.13]    [Pg.28]    [Pg.503]    [Pg.63]    [Pg.548]    [Pg.527]    [Pg.881]    [Pg.141]    [Pg.291]    [Pg.122]   
See also in sourсe #XX -- [ Pg.187 , Pg.199 , Pg.214 ]




SEARCH



Heterogeneous kinetics

Heterogeneous reaction

Heterogeneous reaction kinetics

Heterogeneous reactions definition

Heterogenous Kinetics

Heterogenous, definition

Kinetics definition

Reaction definition

Reaction heterogeneous reactions

© 2024 chempedia.info