Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Heterogeneous active site

Catalysis in a single fluid phase (liquid, gas or supercritical fluid) is called homogeneous catalysis because the phase in which it occurs is relatively unifonn or homogeneous. The catalyst may be molecular or ionic. Catalysis at an interface (usually a solid surface) is called heterogeneous catalysis, an implication of this tenn is that more than one phase is present in the reactor, and the reactants are usually concentrated in a fluid phase in contact with the catalyst, e.g., a gas in contact with a solid. Most catalysts used in the largest teclmological processes are solids. The tenn catalytic site (or active site) describes the groups on the surface to which reactants bond for catalysis to occur the identities of the catalytic sites are often unknown because most solid surfaces are nonunifonn in stmcture and composition and difficult to characterize well, and the active sites often constitute a small minority of the surface sites. [Pg.2697]

P-Lactamases are enzymes that hydrolyze the P-lactam ring of P-lactamantibiotics (penicillins, cephalosporins, monobactams and carbapenems). They are the most common cause of P-lactam resistance. Most enzymes use a serine residue in the active site that attacks the P-lactam-amid carbonyl group. The covalently formed acylester is then hydrolyzed to reactivate the P-lacta-mase and liberates the inactivated antibiotic. Metallo P-lactamases use Zn(II) bound water for hydrolysis of the P-lactam bond. P-Lactamases constitute a heterogeneous group of enzymes with differences in molecular structures, in substrate preferences and in the genetic localizations of the encoding gene (Table 1). [Pg.771]

A quite analogous treatment may be applied to the kinetics of heterogeneously catalyzed reactions. Consider a surface S that contains so active sites to which reactant A, a gaseous or solute species, may bind reversibly with an equilibrium constant KA ... [Pg.93]

Microporous catalysts are heterogeneous catalysts used in catalytic converters and for many other specialized applications, because of their very large surface areas and reaction specificity. Zeolites, for example, are microporous aluminosilicates (see Section 14.19) with three-dimensional structures riddled with hexagonal channels connected by tunnels (Fig. 13.38). The enclosed nature of the active sites in zeolites gives them a special advantage over other heterogeneous catalysts, because an intermediate can be held in place inside the channels until the products form. Moreover, the channels allow products to grow only to a particular size. [Pg.687]

Equation (1.20) is frequently used to correlate data from complex reactions. Complex reactions can give rise to rate expressions that have the form of Equation (1.20), but with fractional or even negative exponents. Complex reactions with observed orders of 1/2 or 3/2 can be explained theoretically based on mechanisms discussed in Chapter 2. Negative orders arise when a compound retards a reaction—say, by competing for active sites in a heterogeneously catalyzed reaction—or when the reaction is reversible. Observed reaction orders above 3 are occasionally reported. An example is the reaction of styrene with nitric acid, where an overall order of 4 has been observed. The likely explanation is that the acid serves both as a catalyst and as a reactant. The reaction is far from elementary. [Pg.8]

For enzymatic and other heterogeneously catalyzed reactions, there may be competition for active sites. This leads to rate expressions with forms such as... [Pg.210]

Equation (10.12) is the simplest—and most generally useful—model that reflects heterogeneous catalysis. The active sites S are fixed in number, and the gas-phase molecules of component A compete for them. When the gas-phase concentration of component A is low, the k a term in Equation (10.12) is small, and the reaction is first order in a. When a is large, all the active sites are occupied, and the reaction rate reaches a saturation value of kjkd-The constant in the denominator, is formed from ratios of rate constants. This makes it less sensitive to temperature than k, which is a normal rate constant. [Pg.356]

Among the theories of limited applicability, those of heterogeneous catalysis processes have been most developed (4, 5, 48). They are based on the assumption of many active sites with different activity, the distribution of which may be either random (23) or thermodynamic (27, 28, 48). Multiple adsorption (46, 47) and tunnel effects (4, 46) also are considered. It seems, however, that there is in principle no specific feature of isokinetic behavior in heterogeneous catalysis. It is true only that the phenomenon has been discovered in this category and that it can be followed easily because of large possible changes of temperature. [Pg.462]

Heterogeneous Ziegler-Natta catalysts used to polymerize olefins exhibit phenomena characteristic of active site heterogeneity (1- 5). Complex kinetic models which account for this likelihood have been developed and used only in simulation studies (6-7). [Pg.403]

As written. Equation 19 Implies a simultaneous loss of two sites of the same type. On a heterogeneous catalyst this is only realistic for adjacent sites, as has recently been suggested by Chien (15). Equation 19 assumes adjacent sites are the same species, which appears consistent with active site structural models appearing in the literature (17-18). Performing the same... [Pg.406]

Increases the active site distribution becomes more heterogeneous. Simulations show that for a unlmodal distribution 0j reached an... [Pg.413]

We can think of a heterogeneous catalyst as a collection of active sites (denoted by ) located at a surface. The total number of sites is constant and equal to N (if there is any chance of confusion with N atoms, we will use the symbol N ). The adsorption of the reactant is formally a reaction with an empty site to give an intermediate I (or more conveniently R if we explicitly want to express that it is the reactant R sitting on an adsorption site). All sites are equivalent and each can be occupied by a single species only. We will use the symbol 6r to indicate the fraction of occupied sites occupied by species R, making N6r the number of occupied sites. Hence, the fraction of unoccupied sites available for reaction will be 1 - 0r The following equations represent the catalytic cycle of Fig. 2.7 ... [Pg.49]

Before deriving the rate equations, we first need to think about the dimensions of the rates. As heterogeneous catalysis involves reactants and products in the three-dimensional space of gases or liquids, but with intermediates on a two-dimensional surface we cannot simply use concentrations as in the case of uncatalyzed reactions. Our choice throughout this book will be to express the macroscopic rate of a catalytic reaction in moles per unit of time. In addition, we will use the microscopic concept of turnover frequency, defined as the number of molecules converted per active site and per unit of time. The macroscopic rate can be seen as a characteristic activity per weight or per volume unit of catalyst in all its complexity with regard to shape, composition, etc., whereas the turnover frequency is a measure of the intrinsic activity of a catalytic site. [Pg.49]

One of the pervasive problems In heterogeneous catalysis Is the assessment of the number and nature of active sites participating In a reaction pathway. One would like to have a technique of... [Pg.67]

The sterically unencumbered catalyst active site allows the copolymerization of a wide variety of olefins with ethylene. Conventional heterogeneous Ziegler/Natta catalysts as well as most metallocene catalysts are much more reactive to ethylene than higher olefins. With constrained geometry catalysts, a-olefins such as propylene, butene, hexene, and octene are readily incorporated in large amounts. The kinetic reactivity ratio, rl, is approximately... [Pg.15]

The rate constants in table 4 for Ru/AlaOs should be considered as initial rate constants since it was not possible to achieve a higher coverage of N— than 0.25. Furthennorc, it was not possible to detect TPA peaks for Ru/AlaOs within the experimental detection limit of about 20 ppm. Ru/MgO is a heterogeneous system with respect to the adsorption and desorption of Na due to the presence of promoted active sites which dominate under NH3 synthesis conditions. The rate constant of desorption given in table 4 for Ru/MgO refers to the unpromoted sites [19]. The Na TPD, Na TPA and lER results thus demonstrate the enhancing influence of the alkali promoter on the rate of N3 dissociation and recombination as expected based on the principle of microscopic reversibility. Adding alkali renders the Ru metal surfaces more uniform towards the interaction with Na. [Pg.324]

One key aspect of SOMC is the determination of the structure of surface complexes at a molecular level one of the reasons being that our goal is to assess structure-activity relationships in heterogeneous catalysis, which requires a firm characterization of active sites or more exactly active site precursors. While elemental analysis is an essential first step to understand how the organometallic complex reacts with the support, it is necessary to gather spectroscopic data in order to understand what are the ligands and... [Pg.161]

As early as 1925, Hugh S. Taylor suggested that in heterogeneous catalytic reactions, not the entire catalyst surface is involved but the reaction occurs predominantly at certain special points or segments of the surface that he named active sites. Since that time, the presence of special points or segments with higher catalytic activity has been asserted not only for heterogeneous chemical reactions but also for electrochemical reactions. [Pg.533]

Attempts to determine how the activity of the catalyst (or the selectivity which is, in a rough approximation, the ratio of reaction rates) depends upon the metal particle size have been undertaken for many decades. In 1962, one of the most important figures in catalysis research, M. Boudart, proposed a definition for structure sensitivity [4,5]. A heterogeneously catalyzed reaction is considered to be structure sensitive if its rate, referred to the number of active sites and, thus, expressed as turnover-frequency (TOF), depends on the particle size of the active component or a specific crystallographic orientation of the exposed catalyst surface. Boudart later expanded this model proposing that structure sensitivity is related to the number of (metal surface) atoms to which a crucial reaction intermediate is bound [6]. [Pg.167]

In catalysis active sites are operative that allow for an alternative reaction path. For a satisfactory catalyst this alternative pathway leads to higher rates and higher selectivity. In heterogeneous catalysis reactant molecules adsorb at active sites on the catalyst surface at the surface sites reactions occur and products are desorbed subsequently. After desorption, active sites are again available for reactant molecules and the cycle is closed. In homogeneous catalysis the situation is essentially identical. Here complexation and decomplexation occur. A complication in heterogeneous catalysis is the need for mass transfer into and out of the catalyst particle, which is usually porous with the major part of the active sites at the interior surface. [Pg.61]


See other pages where Heterogeneous active site is mentioned: [Pg.658]    [Pg.423]    [Pg.658]    [Pg.423]    [Pg.723]    [Pg.2697]    [Pg.2826]    [Pg.489]    [Pg.35]    [Pg.244]    [Pg.160]    [Pg.163]    [Pg.487]    [Pg.79]    [Pg.89]    [Pg.157]    [Pg.70]    [Pg.185]    [Pg.594]    [Pg.674]    [Pg.13]    [Pg.154]    [Pg.326]    [Pg.118]    [Pg.152]    [Pg.173]    [Pg.299]    [Pg.179]    [Pg.427]    [Pg.92]    [Pg.110]   
See also in sourсe #XX -- [ Pg.105 ]




SEARCH



© 2024 chempedia.info