Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Heterocyclics anodic oxidation

Pyrrole derivatives substituted in positions 1-, 3-, or 4- have also been electrochemically polymerized (positions 2- and 5- must be free for polymerization). Besides homopolymers, copolymers can also be prepared in this way. Other nitrogen heterocycles that have been polymerized by anodic oxidation include carbazole, pyridazine, indole, and their various substitution derivatives. [Pg.338]

Heterocycles are of great interest in organic chemistry due to their specific properties. Many of these cycles are widely present in natural and pharmaceutical compounds. Electrochemistry appears as a powerful tool for the preparation and the functionalization of various heterocycles because anodic oxidations and cathodic reductions allow the selective preparation of highly reactive intermediates (radicals, radical ions, cations, anions, and electrophilic and nucleophilic groups). In this way, the electrochemical technique can be used as a key step for the synthesis of complex molecules containing heterocycles. A review of the electrolysis of heterocyclic compounds is summarized in Ref. [1]. [Pg.341]

Various reactive intermediates have been postulated in the formation of heterocycles by anodic oxidation. [Pg.341]

Oxidations of heterocycles can afford formations of double bonds. This is illustrated by the anodic oxidation of dihydropy-ridines (Scheme 11) [16] for which pyri-dinium cations are produced according to an ECE mechanism. Unsubstituted dihy-dropyridines at carbon 4 give pyridines. [Pg.345]

The formation of a double bond during anodic oxidations can result from eliminations of protons, carbon dioxide or acylium cations. The electrooxi dative aromatization of dihydropyridine derivatives and heterocycles containing nitrogen atom (di-hydroquinoxalines, tetrahydrocinnolines) involves an ECE mechanism as previously... [Pg.369]

The anodic oxidation of trifluoroacetic acid affords the trifluoromethyl radical CFj. Addition of this radical to unsaturated heterocycles can produce bis(trifluoromethylated) compounds (Scheme 119) [225]. [Pg.379]

In addition, anodic oxidations, at a platinum or glassy carbon electrode, of heterocycles such as pyrrole or thiophene derivatives in organic solvents (acetonitrile, propylene carbonate, dichloromethane) were widely used to... [Pg.381]

This article discusses the anodic synthesis of heterocyclic compounds that have appeared during the last decade. The mechanistic aspects involving intramolecular, intermolecular cyclizations and the homogeneous vs heterogeneous anodic oxidations were considered. This review deals with the recent advances in anodic oxidations in which heterocyclic compounds were synthesized through carbon-heteroatom and heteroatom-heteroatom bond formation. [Pg.88]

In 1981 we published the first paper [22] on the synthesis of s-triazolo[4,3-a]pyridinium salts, 4, by the anodic oxidation of hydrazones 3 in the presence of pyridine (Scheme 5). In our working mechanistic scheme we proposed nitrilimine as the possible intermediate and pointed out that this reaction opens the door to a wide range of heterocyclic systems via anodic oxidation of aldehyde hydrazones through 1,3-dipolar cycloaddition reactions of the nitrilimine involved. [Pg.95]

Anodic oxidation of formazane 18 [17], 1-arylmethylenesemicarbazide 19 [55], p-nitrobenzaldehyde phenylhydrazone 20 [56], and 2-benzoylpyridine phenylhydrazone 21 [57] afforded the corresponding heterocycles in a very good yield (Scheme 14). The homogeneous oxidation of compounds 18-20 was carried out by indirect electrolysis by the mediators generated in situ [58]. [Pg.104]

Another heterocyclization is presented by Panifilow et al. Cyclic acetals and ethers are obtained by electrochemical oxidation of the terpenoid alcohol linalool 57 in methanol containing alkaline and sodium methoxide as electrolyt [102]. Anodic oxidation of the C(6)-C 7) double bond of linalool leads to the radical cation 58. In addition to direct methoxylation of the radical cation an attack on the hydroxyl group takes place. After a second one-electron oxidation and following methoxylation the regioisomeric cyclic acetal and a subsequent 1,2-hydride shift, the cyclic acetal 60 and the cyclic ether 61 are finally formed in yields of 16 and 24%, respectively (Scheme 13). As shown by Utley and co-workers bicyclic lactones 65 and 66 can be synthesized by anodic oxidation... [Pg.87]

Like benzenoid hydrocarbons, pyridine-like heterocycles give well-developed two-electron waves on reduction at the dropping mercury electrode. The latter are polarographically much more reducible than the former. This can be explained easily in terms of the HMO theory It is assumed (cf. ref. 3) that the value of the half-wave potential is determined essentially by the energy of the lowest free 7r-molecular orbital (LFMO) of the compound to be reduced, and for models of hetero analogues this quantity is always lower than that for the parent hydrocarbons. Introduction of an additional heteroatom into the molecule leads to a further enhancement of the ease of polarographic reducibility.95 On the other hand, anodic oxidation of the heterocyclic compounds is so much more difficult in comparison with benzenoid hydrocarbons that they are not oxidizable under the usual polarographic conditions. An explanation in terms of the HMO theory is obvious. [Pg.91]

The electrochemical generation of a nitrilimine provides an entrance to a wide range of heterocyclic systems via anodic oxidation of aldehyde hydra-zones. The same reaction was used for annelation of various heterocyclic systems,86 e.g., substituted pyridines, quinolines, isoquinolines, indoles, imidazoles, benzimidazoles, and benzotriazoles. [Pg.261]

On anodic oxidation of 3,6-diisobutylpiperazine-2,5-dione in acetonitrile, a compound was obtained, which was suggested to be 1,6-diisopropyl-3,8-dimethyl-5//, 10//-diimidazo[ 1,5-n 1, 5 -d]pyrazine-5,10-dione (44), formed by 1,3-cycloaddition of a primary oxidation product to the solvent.96 Another heterocyclic synthesis by intermolecular coupling of 2,4,5-tri-tert-butylphenol with acetonitrile has been reported.97... [Pg.263]

Anodic oxidation of JV,N-dimethyl-co-hydroxyamides (57) in CH3OH-Bu4NBF4 at a platinum anode leads to formation of N-methoxy-JV-methyl-co-hydroxyamides (58) in high yield.116 The latter could in some cases (formation of five-, six-, and seven-membered rings) easily be transformed to l,3-oxaza-4-oxo heterocyclic systems (59) by acid catalysis [Eq. (49)]. No direct formation of the 1,3-oxazaheterocycles was observed, e.g., 57++59. An intramolecular addition of the hydroxy group to the intermediate acylam-monium ion is believed to be hindered by adsorption phenomena at the anode surface. [Pg.267]

Anodic oxidation of heterocyclic thiones leads generally to disulfides. Thus cyclic voltammetric data at a pyrolytic graphite anode of purine-2,6-dithione show three peaks. The first and second correspond to a disulfide formation from the 6- and 2-thione groups, respectively, whereas the third is due to an oxidation to purine-2,6-disulfonic acid.432 Similarly, the electrochemical oxidation of benzthiazole-2-thione and benzimidazole-2-thione in CH3CN-NaC104 at a platinum electrode afforded the corresponding disulfides in good yield.433... [Pg.338]

Compounds containing the C=N functional group derivatives undergo anodic oxidation when the nitrogen atom bears an electron-rich heteroatom. Perhaps the simplest such species are aldoximes, which are anodically oxidized to nitrile oxides (34)38. The reaction was carried out in an undivided cell3 , hence the species 34 underwent immediate reduction to a nitrile (equation 19). However, since nitrile oxides are 1,3-dipolar species, one could in principle carry out the oxidation in a divided cell in the presence of a good 1,3-dipolarophile40 to effect the synthesis of substituted heterocycles. [Pg.620]

The direct electrochemical methoxylation of furan derivatives represents another technically relevant alkoxylation process. Anodic treatment of furan (14) in an undivided cell provides 2,5-dimethoxy-2,5-dihydrofuran (15). This particular product represents a twofold protected 1,4-dialdehyde and is commonly used as a C4 building block for the synthesis of N-heterocycles in life and material science. The industrial electroorganic processes employ graphite electrodes and sodium bromide which acts both as supporting electrolyte and mediator [60]. The same electrolysis of 14 can be carried out on BDD electrodes, but no mediator is required The conversion is performed with 8% furan in MeOH, 3% Bu4N+BF4, at 15 °C and 10 A/dm2. When 1.5 F/mol were applied, 15 is obtained in 75% yield with more or less quantitative current efficiency. Treatment with 2.3 F/mol is rendered by 84% chemical yield for 15 and a current efficiency of 84% [61, 62]. In contrast to the mediated process, furan is anodically oxidized in the initial step and subsequently methanol enters the scene (Scheme 7). [Pg.12]

Simons process — Electrochemical polyfluorination reactions of organic compounds are the only efficient way to industrial production of perfluorinated compounds. The reaction proceeds in the solution of KF in liquid HF (b.p. 19.5 °C), where the starting substances as alcohols, amines, ethers, esters, aliphatic hydrocarbons and halo-hydrocarbons, aromatic and heterocyclic compounds, sulfo- or carboxylic acids are dissolved. During anodic oxidation, splitting of the C-H bonds and saturation of the C=C bonds occur and fluorine atoms are introduced. [Pg.612]

Recently, evidence for the transient ex istence of cation-radicals from simple pyrroles and indoles has been furnished by the observation of anodic regiospecific cyanation of these heterocycles.455 Both heterocycles are preferentially cyanated at the 2-position. Methyl side chains at these positions are also activated to cyanation and deuteration. Indole cation-radicals have been generated by photoionization in an aqueous medium.456 Unsubstituted at N, their lifetime in neutral solution is 10-6sec before they lose the N-proton however, it is longer in more acidic conditions.456 The photophysical properties of indole, its cation-radical, and neutral radical have been the subject of a recent theoretical analysis.457 On anodic oxidation of 2,3-diphenyl indole in acetonitrile, the initially formed cation-radicals dimerize to a product identified, primarily on the basis of 13C NMR, as 3-(5-indolyl)-indolenine (141).458... [Pg.282]

In this chapter, the application of polarography in the determination of benzodiazepines is emphasized in which this method has played an outstanding role but it can be also useful with some other psychotherapeutics such as fluorine-substituted butyrophenones [240] or those with seven-membered, possibly heterocyclic rings [241] such as in imipramine. In the latter case, anodic oxidation waves are obtained with rotated noble metal electrodes. [Pg.285]

Radical 80 has been prepared as its perchlorate salt by anodic oxidation in ethyl acetate in the presence of hthium perchlorate. The reactivity toward nucleophiles of material so prepared was investigated nitrite and nitrate ions give 2-nitrodibenzo[l,4]dioxin although the mechanisms of the reactions are not clear. Pyridine gives 7V-(2-dibenzo[l,4]dioxinyl)pyridinium ion (84). Other nucleophiles acted as electron donors and largely reduced 80 back to the parent heterocycle they included amines, cyanide ion and water. In an earlier study, the reaction of 80 with water had been examined and the ultimate formation of catechol via dibenzo[l,4]dioxin-2,3-dione was inferred. The cation-radical (80) has been found to accelerate the anisylation of thianthrene cation-radical (Section lII,C,4,b) it has been found to participate in an electrochemiluminescence system with benzo-phenone involving phosphorescence of the latter in a fluid system, and it has been used in a study of relative diffusion coefficients of aromatic cations which shows that it is justified to equate voltammetric potentials for these species with formal thermodynamic redox potentials. The dibenzo[l,4]dioxin semiquinone 85 has been found to result from the alkaline autoxidation of catechol the same species may well be in-... [Pg.66]

The electronic absorption spectrum of the cation-radical of thiophene itself has been observed following low-temperature y-radiolysis of the heterocycle in a Freon matrix.The radical has also been implicated in the oxidation of thiophene by dibenzoyl peroxide it is believed to be formed at the contact of certain transition metal layer-silicates with thiophene.The anodic oxidation of 2,5-dimethylthiophene has been studied by Japanese workers who found strong evidence for the formation of the cation-radical as the primary oxidation product.In the presence of strong nucleophiles such as cyanide ion, the cation-radical undergoes nucleophilic attack before further oxidation. In the presence of more basic species such as acetate ion, the cation-radical is deprotonated to give a thienylmethyl radical which undergoes further reaction. The results were compared with similar observations for the oxidation of 2,5-dimethylfuran. Czech workers have also studied the anodic oxidation of substituted thiophenes. This work has focused on the preparative value of anodic oxidations in acidified methanol. Cation-radical formation is implied for the primary step, but the value of the method lies in the fact that sulfur is ultimately eliminated from the substrate and functionalized y-dicarbonyl compounds result. [Pg.69]

The anodic oxidation of hydrazones and semicarbazones to heterocyclic compounds is discussed in Chapter 18. [Pg.444]

Anodic oxidation of azomethine, hydrazone, oxime, formazane, and semicarbazone structures has been used to initiate the intramolecular cyclization [119] under formation of heterocycles like triazoles [126,127], oxadiazoles [128,129], triazolinones [129], benzoxa-zoles [130,131], benzimidazoles [130,131], pyrazoles [132], indazoles [133], furoxanes [134], and tetrazolium salts [135] (see Chapter 18). Some of these reactions can be performed advantageously by indirect electrolysis using tris(4-bromophenyl)amin or 2,3-dihydro-2,2-dimethylphenothiazine-6(l/7)-one as mediators [119,136]. Two examples are given in Eqs. (19) and (20). [Pg.562]

Becker, who intensively studied the anodic oxidation of heteroallenes, showed that electrooxidation of aryl-substituted ketene imines leads to mono- and multiannulated heterocyclic dimers [139]. [Pg.563]

The anodic oxidation of alkyl isothiocyanates (RNCS) in MeCN is highly dependent on the nature of the alkyl group [227]. Primary RNCS afforded exclusively five-membered heterocyclic products LXXVI-LXXVIII, whereas secondary and tertiary RNCS involved formation of a-cleavage products (RNHCOCH3) or isocyanates (RNCO) due to substitution of sulfur for oxygen processes. [Pg.662]


See other pages where Heterocyclics anodic oxidation is mentioned: [Pg.6]    [Pg.91]    [Pg.340]    [Pg.369]    [Pg.369]    [Pg.371]    [Pg.377]    [Pg.53]    [Pg.108]    [Pg.123]    [Pg.129]    [Pg.969]    [Pg.37]    [Pg.22]    [Pg.37]    [Pg.64]    [Pg.293]    [Pg.306]    [Pg.54]    [Pg.969]    [Pg.1017]    [Pg.275]    [Pg.351]   
See also in sourсe #XX -- [ Pg.29 , Pg.239 ]




SEARCH



Anode oxidation

Anodes oxides

Anodic oxidation

Anodic oxides

Oxidation heterocyclic

Oxidative heterocyclization

© 2024 chempedia.info