Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Heat transfer temperature gradients

Simultaneous heat and mass transfer plays an important role in various physical, chemical, and biological processes hence, a vast amount of published research is available in the literature. Heat and mass transfer occurs in absorption, distillation extraction, drying, melting and crystallization, evaporation, and condensation. Mass flow due to the temperature gradient is known as the thermal diffusion or Soret effect. Heat flow due to the isothermal chemical potential gradient is known as the diffusion thermoeffect or the Dufour effect. The Dufour effect is characterized by the heat of transport, which represents the heat flow due to the diffusion of component / under isothermal conditions. Soret effect and Dufour effect represent the coupled phenomena between the vectorial flows of heat and mass. Since many chemical reactions within a biological cell produce or consume heat, local temperature gradients may contribute in the transport of materials across biomembranes. [Pg.363]

For the examination of the applied metallic or ceramic layer, the test object is heated up from the outside The heat applying takes place impulse-like (4ms) by xenon-flash lamps, which are mounted on a rack The surface temperature arises to approx 150 °C Due to the high temperature gradient the warmth diffuses quickly into the material An incorrect layer, e g. due to a delamiation (layer removal) obstructs the heat transfer, so that a higher temperature can be detected with an infrared camera. A complete test of a blade lasts approximatly 5 minutes. This is also done automatically by the system. In illustration 9, a typical delamination is to be recognized. [Pg.405]

Ga.s-to-Pa.rticle Heat Transfer. Heat transfer between gas and particles is rapid because of the enormous particle surface area available. A Group A particle in a fluidized bed can be considered to have a uniform internal temperature. For Group B particles, particle temperature gradients occur in processes where rapid heat transfer occurs, such as in coal combustion. [Pg.77]

Fourier s Law of Heat Conduction. The heat-transfer rate,, per unit area,, in units of W/m (Btu/(ft -h)) transferred by conduction is directly proportional to the normal temperature gradient ... [Pg.481]

Convective heat transfer is classified as forced convection and natural (or free) convection. The former results from the forced flow of fluid caused by an external means such as a pump, fan, blower, agitator, mixer, etc. In the natural convection, flow is caused by density difference resulting from a temperature gradient within the fluid. An example of the principle of natural convection is illustrated by a heated vertical plate in quiescent air. [Pg.482]

Maintenance of isothermal conditions requires special care. Temperature differences should be minimised and heat-transfer coefficients and surface areas maximized. Electric heaters, steam jackets, or molten salt baths are often used for such purposes. Separate heating or cooling circuits and controls are used with inlet and oudet lines to minimize end effects. Pressure or thermal transients can result in longer Hved transients in the individual catalyst pellets, because concentration and temperature gradients within catalyst pores adjust slowly. [Pg.516]

The definition of the heat-transfer coefficient is arbitrary, depending on whether bulk-fluid temperature, centerline temperature, or some other reference temperature is used for ti or t-. Equation (5-24) is an expression of Newtons law of cooling and incorporates all the complexities involved in the solution of Eq. (5-23). The temperature gradients in both the fluid and the adjacent solid at the fluid-solid interface may also be related to the heat-transfer coefficient ... [Pg.558]

The fin efficiency is found from mathematically derived relations, in which the film heat-transfer coefficient is assumed to be constant over the entire fin and temperature gradients across the thickness of the fin have been neglected (see Kraus, Extended Suiface.s, Spartan Books, Baltimore, 1963). The efficiency cui ves for some common fin configurations are given in Figs. Il-3(k7 and 11-30 ,... [Pg.1052]

Provide adequate heat transfer surface area or temperature gradient (keeping in mind that fluid properties and temperature change as the reaction progresses)... [Pg.58]

Temperature gradient normal to flow. In exothermic reactions, the heat generation rate is q=(-AHr)r. This must be removed to maintain steady-state. For endothermic reactions this much heat must be added. Here the equations deal with exothermic reactions as examples. A criterion can be derived for the temperature difference needed for heat transfer from the catalyst particles to the reacting, flowing fluid. For this, inside heat balance can be measured (Berty 1974) directly, with Pt resistance thermometers. Since this is expensive and complicated, here again the heat generation rate is calculated from the rate of reaction that is derived from the outside material balance, and multiplied by the heat of reaction. [Pg.77]

The temperature of pressing has also a noticeable effect [226,227] as it does influence the surface/core temperature gradient and has a direct influence on the temperature rise in the board core layer. In short, the higher the press temperature, the faster the heat conduction and the faster the development of the steam gradient across the wood mat. The press temperature will influence the steam front transfer time to the core layer. The higher the initial temperature, the faster the steam front enters the mat core. Increasing the press temperature will cause the maximum steam pressure peak to appear earlier but does not result in a higher core temperature. [Pg.1095]

An important mixing operation involves bringing different molecular species together to obtain a chemical reaction. The components may be miscible liquids, immiscible liquids, solid particles and a liquid, a gas and a liquid, a gas and solid particles, or two gases. In some cases, temperature differences exist between an equipment surface and the bulk fluid, or between the suspended particles and the continuous phase fluid. The same mechanisms that enhance mass transfer by reducing the film thickness are used to promote heat transfer by increasing the temperature gradient in the film. These mechanisms are bulk flow, eddy diffusion, and molecular diffusion. The performance of equipment in which heat transfer occurs is expressed in terms of forced convective heat transfer coefficients. [Pg.553]

A large Biot Number means that conduction controls the energy transfer to/from the plastic and large temperature gradients will exist in the plastic. A small Biot Number means that convection is the dominant factor. The above analysis was for conduction heat transfer (B, - oo). When the plastic moulding is taken out of the mould we need to check the value of B,. In this case... [Pg.393]

Conduction is the heat transfer due to spatial temperature differences (temperature gradient) without any macroscopic material movement. Conduction is important in solids and depends essentially on the materia properties (Fig. 1 1.27). [Pg.1060]

Ratio of temperature gradients, used for heat transfer taking place with fluid flow. [Pg.1402]

Conduction is heat transfer through a solid nonporous barrier when a temperature difference exists across the barrier. The thermal transfer capability of the specific barrier or wall material, known as thermal conductivity, determines the temperature gradient that will exist through the material. [Pg.53]

The Fourier law gives the rate at which heat is transferred by conduction through a substance without mass transfer. This states that the heat flow rate per unit area, or heat flux, is proportional to the temperature gradient in the direction of heat flow. The relationship between heat flux and temperature gradient is characterized by the thermal conductivity which is a property of the substance. It is temperature dependent and is determined experimentally. [Pg.346]

Loop Tests Loop test installations vary widely in size and complexity, but they may be divided into two major categories (c) thermal-convection loops and (b) forced-convection loops. In both types, the liquid medium flows through a continuous loop or harp mounted vertically, one leg being heated whilst the other is cooled to maintain a constant temperature across the system. In the former type, flow is induced by thermal convection, and the flow rate is dependent on the relative heights of the heated and cooled sections, on the temperature gradient and on the physical properties of the liquid. The principle of the thermal convective loop is illustrated in Fig. 19.26. This method was used by De Van and Sessions to study mass transfer of niobium-based alloys in flowing lithium, and by De Van and Jansen to determine the transport rates of nitrogen and carbon between vanadium alloys and stainless steels in liquid sodium. [Pg.1062]

Wherever heat is involved temperature also fulfils an important role firstly because the heat content of a body is a function of its temperature and, secondly, because temperature difference or temperature gradient determines the rate at which heat is transferred. Temperature has the dimension 9 which is independent of M,L and T, provided that no resort is made to the kinetic theory of gases in which temperature is shown to be directly proportional to the square of the velocity of the molecules. [Pg.7]

Considering now the case where there is a temperature gradient in the T-direction, the rate of passage of molecules through the unit plane a-a = (2 ,N (where r 2 is some fraction of the order of unity). If the temperature difference between two planes situated a distance jX apart is (0 — O ), the net heat transferred as one molecule passes in one direction and another molecule passes in the opposite direction is c,n(0 — ff), where cm is the heat capacity per molecule. [Pg.698]


See other pages where Heat transfer temperature gradients is mentioned: [Pg.873]    [Pg.929]    [Pg.873]    [Pg.929]    [Pg.13]    [Pg.341]    [Pg.171]    [Pg.86]    [Pg.481]    [Pg.508]    [Pg.390]    [Pg.418]    [Pg.170]    [Pg.518]    [Pg.297]    [Pg.284]    [Pg.1091]    [Pg.435]    [Pg.503]    [Pg.432]    [Pg.1084]    [Pg.1062]    [Pg.28]    [Pg.74]    [Pg.33]    [Pg.377]    [Pg.143]    [Pg.98]    [Pg.393]    [Pg.685]    [Pg.694]   
See also in sourсe #XX -- [ Pg.180 , Pg.181 ]




SEARCH



Heat gradient

Heat transfer temperature

Temperature gradients

© 2024 chempedia.info