Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Heat transfer droplet

In a suspension polymerisation monomer is suspended in water as 0.1—5-mm droplets, stabilised by protective coUoids or suspending agents. Polymerisation is initiated by a monomer-soluble initiator and takes place within the monomer droplets. The water serves as both the dispersion medium and a heat-transfer agent. Particle sise is controlled primarily by the rate of agitation and the concentration and type of suspending aids. The polymer is obtained as small beads about 0.1—5 mm in diameter, which are isolated by filtration or centrifugation. [Pg.169]

If condensation requires gas stream cooling of more than 40—50°C, the rate of heat transfer may appreciably exceed the rate of mass transfer and a condensate fog may form. Fog seldom occurs in direct-contact condensers because of the close proximity of the bulk of the gas to the cold-Hquid droplets. When fog formation is unavoidable, it may be removed with a high efficiency mist collector designed for 0.5—5-p.m droplets. Collectors using Brownian diffusion are usually quite economical. If atmospheric condensation and a visible plume are to be avoided, the condenser must cool the gas sufftciendy to preclude further condensation in the atmosphere. [Pg.389]

DropletHea.tup, A relation for the time required for droplet heatup, T can be derived based on the assumption that forced convection is the primary heat-transfer mechanism, and that the Ran2-MarshaH equation for heat transfer to submerged spheres holds (34). The result is... [Pg.55]

To the extent that radiation contributes to droplet heatup, equation 28 gives a conservative estimate of the time requirements. The parameter ( ) reflects the dependence of the convective heat-transfer coefficient on the Reynolds number ... [Pg.55]

Convection heat transfer is dependent largely on the relative velocity between the warm gas and the drying surface. Interest in pulse combustion heat sources anticipates that high frequency reversals of gas flow direction relative to wet material in dispersed-particle dryers can maintain higher gas velocities around the particles for longer periods than possible ia simple cocurrent dryers. This technique is thus expected to enhance heat- and mass-transfer performance. This is apart from the concept that mechanical stresses iaduced ia material by rapid directional reversals of gas flow promote particle deagglomeration, dispersion, and Hquid stream breakup iato fine droplets. Commercial appHcations are needed to confirm the economic value of pulse combustion for drying. [Pg.242]

Suspension Polymerization. This method (10) might be considered as a number of bulk polymerizations carried out simultaneously in the monomer droplets with water acting as a heat-transfer medium. A monomer-soluble initiator, eg, a peroxide or azo compound, and a protective coUoid like poly(vinyl alcohol) or bentonite, are requited. After completion of the polymerization, the excess of monomer(s) is steam stripped, and the beads of polymer are collected and washed on a centrifiige or filter and dried on a vibrating screen or by means of an expeUer—extmder. [Pg.474]

Spray Dryers A spray diyer consists of a large cyhndrical and usu ly vertical chamber into which material to be dried is sprayed in the form of small droplets and into which is fed a large volume of hot gas sufficient to supply the heat necessary to complete evaporation of the liquid. Heat transfer and mass transfer are accomphshed by direct contact of the hot gas with the dispersed droplets. After completion of diying, the cooled gas and solids are separated. This may be accomplished partially at the bottom of the diying chamber by classification and separation of the coarse dried particles. Fine particles are separated from the gas in external cyclones or bag collectors. When only the coarse-particle fraction is desired for fini ed product, fines may be recovered in wet scrubbers the scrubber liquid is concentrated and returned as feed to the diyer. Horizontal spray chambers are manufactured with a longitudinal screw conveyor in the bottom of the diying chamber for continuous removal of settled coarse particles. [Pg.1229]

A droplet Nusselt number = 2, corresponding to pure conduction (Reynolds number = 0) to infinity, is employed for evaluating the coefficient of heat transfer. [Pg.1237]

Suspension polymerisation of styrene is widely practised commercially. In this process the monomer is suspended in droplets 5 -Min. in diameter in a fluid, usually water. The heat transfer distances for the dissipation of the exotherm are thus reduced to values in the range s-fisin. Removal of heat from the low-viscosity fluid medium presents little problem. The reaction is initiated by monomer-soluble initiators such as benzoyl peroxide. [Pg.431]

Fill Packing Specially designed baffling used to provide a large surface area for heat transfer. Two classes of materials are used splash bars of wood, metal transite or plastic and film pack (cellular fill). The splash type cools the water as the droplets bounce down a series of bars in the air stream film packing converts droplets into a thin film. [Pg.91]

To obtain a low flash zone pressure, the number of plates in the upper section of the vacuum pipe still is reduced to the minimum necessary to provide adequate heat transfer for condensing the distillate with the pumparound streams. A section of plates is included just above the flash zone. Here the vapors rising from the flash zone are contacted with reflux from the product drawoff plate. This part of the tower, called the wash section, serves to remove droplets of pitch entrained in the flash zone and also provides a moderate amount of fractionation. The flash zone operates at an absolute pressure of 60-90 mm Hg. [Pg.79]

Another theory of liquid-liquid explosion comes from Board et al. (1975). They noticed that when an initial disturbance, for example, at the vapor-liquid interface, causes a shock wave, some of the liquid is atomized, thus enhancing rapid heat transfer to the droplets. This action produces further expansion and atomization. When the droplets are heated to a temperature equal to the superheat temperature limit, rapid evaporation (flashing liquid) may cause an explosion. In fact, this theory resembles the theory of Reid (1979), except that only droplets, and not bulk liquid, have to be at the superheat temperature limit of atmospheric pressure (McDevitt et al. 1987). [Pg.160]

The critical section of the circuit (Figure 5.3) is where there is no liquid refrigerant left to help move the oil, i.e. the evaporator outlet and the suction pipe back to the compressor. Entrainment velocities of 5-7 m/ s are required to ensure that oil droplets will be carried back by the dry refrigerant gas to the compressor. The principle of continuous fluid velocity means that the evaporator will be in a continuous circuit. This does not imply that it has to be one pipe, since many pipes may be arranged in parallel to get the required heat transfer surface, providing the minimum velocity criteria are met. [Pg.61]

In high heat flux (heat transfer rate per unit area) boilers, such as power water tube (WT) boilers, the continued and more rapid convection of a steam bubble-water mixture away from the source of heat (bubbly flow), results in a gradual thinning of the water film at the heat-transfer surface. A point is eventually reached at which most of the flow is principally steam (but still contains entrained water droplets) and surface evaporation occurs. Flow patterns include intermediate flow (churn flow), annular flow, and mist flow (droplet flow). These various steam flow patterns are forms of convective boiling. [Pg.6]

G2. Goldmann, K., Firstenberg, H., and Lombardi, C., Burnout in turbulent flow—a droplet diffusion model, J. Heat Transfer 83, 158 (1961). [Pg.289]

An important application of heat transfer to a sphere is that of conduction through a stationary fluid surrounding a spherical particle or droplet of radius r as encountered for example in fluidised beds, rotary kilns, spray dryers and plasma devices. If the temperature difference T[ T2 is spread over a very large distance so that r2 = oo and 7 t is the temperature of the surface of the drop, then ... [Pg.393]

In Section 9.3.4, consideration is given to the problem of heat transfer by conduction through a surrounding fluid to spherical particles or droplets. Relative motion between the fluid and particle or droplet causes an increase in heat transfer, much of which may be due to convection. Many investigators have correlated their data in the form ... [Pg.434]

Single-phase heat transfer rates using droplet sprays and arrays of micro-jets have been compared by Fabbri et al. (2005). It was found that at a flow rate of 2.87 pl/mm s spraying provides a higher heat transfer rate than any jet configuration, while at higher flow rate of 4.63 pl/mm s jet arrays can perform as well as sprays. [Pg.16]

After venting of the elongated bubble, the region of liquid droplets begins. The vapor phase occupies most of the channel core. The distinctive feature of this region is the periodic dryout and wetting phenomenon. The duration of the two-phase period, i.e., the presence of a vapor phase and micro-droplet clusters on the heated wall, affects the wall temperature and heat transfer in micro-channels. As the heat flux increases, while other experimental conditions remain unchanged, the duration of the two-phase period decreases, and CHF is closer. [Pg.54]

Figure 150. Direct contact heat storage. During loading the heat transfer fluid is heated hy the supply from outside. It is then pumped to the bottom of the storage and released in small droplets. These rise, melt the PCM and are collected at the top to go back to the inner circuit... Figure 150. Direct contact heat storage. During loading the heat transfer fluid is heated hy the supply from outside. It is then pumped to the bottom of the storage and released in small droplets. These rise, melt the PCM and are collected at the top to go back to the inner circuit...
Two-phase flows are classified by the void (bubble) distributions. Basic modes of void distribution are bubbles suspended in the liquid stream liquid droplets suspended in the vapor stream and liquid and vapor existing intermittently. The typical combinations of these modes as they develop in flow channels are called flow patterns. The various flow patterns exert different effects on the hydrodynamic conditions near the heated wall thus they produce different frictional pressure drops and different modes of heat transfer and boiling crises. Significant progress has been made in determining flow-pattern transition and modeling. [Pg.33]

The primary mode of heat transfer at the wall is forced convection of the vapor phase. As the liquid does not wet the heating surface during film boiling, heat transfer due to drop-wall collisions is relatively small, resulting in low wall-drop heat transfer (only a few percent of the total heat input). Most of the droplet evaporation occurs because of vapor-drop heat transfer. Just after dryout, the... [Pg.307]

Heat transfer from the vapor to the entrained liquid droplets... [Pg.310]


See other pages where Heat transfer droplet is mentioned: [Pg.432]    [Pg.432]    [Pg.8]    [Pg.1466]    [Pg.1899]    [Pg.2115]    [Pg.157]    [Pg.249]    [Pg.57]    [Pg.78]    [Pg.96]    [Pg.135]    [Pg.218]    [Pg.275]    [Pg.311]    [Pg.387]    [Pg.393]    [Pg.393]    [Pg.694]    [Pg.301]    [Pg.997]    [Pg.212]    [Pg.269]    [Pg.278]    [Pg.305]    [Pg.307]    [Pg.309]   
See also in sourсe #XX -- [ Pg.158 , Pg.159 ]




SEARCH



Heating droplet

© 2024 chempedia.info