Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Heat transfer wall-drop

These devices are replacing the older tank and spiral-conveyor devices. Better provisions for speed and ease of fill and discharge (without powered rotation) minimize downtime to make this batch-operated device attractive. Heat-transfer coefficients ranging from 28 to 200 W/(m °C) [5 to 35 Btu/(h fF °F)] are obtained. However, if caking on the heat-transfer walls is serious, then values may drop to 5.5 or 11 W/(m °C) [1 or 2 Btu/(h fH °F)], constituting a misapplication. The double cone is available in a fairly wide range of sizes and construction materials. The users are the fine-chemical, pharmaceutical, and biological-preparation industries. [Pg.1095]

E. M. Sparrow, Heat/mass transfer characteristics for flow in a corrugated wall channel, J. Heat Transfer 99, 187-95 (1977) J. E. O Brien and E. M. Sparrow, Corrugated-duct heat transfer, pressure drop, and flow visualization, J. Heat Transfer 104, 410-16 (1982) G.Wang and S. P. Vanka, Convective heat transfer in periodic wavy passages, Int. J. Heat Mass Transfer Ml, 3219-30 (1995). [Pg.283]

The temperature is approximately 20°F below the 265°F temperature limit. The sections differ by less than 1 F. This is probably just luck because that good a balance is not really necessary. Also, it should be noted that to maintain simplicity the additional factors were ignored, such as the 10°F temperature pickup in the return stream due to internal wall heat transfer. Also, nozzle pressure drops for the exit and return were not used. Balance piston leakage was not used as it was in Example 5-3. When all the factors are used, the pressures for each section would undoubtedly need additional adjustment as would the efficiency. However, for the actual compression process, the values are quite realistic, and for doing an estimate, this simpler approach may be quite adequate,... [Pg.183]

The baffle cut determines the fluid velocity between the baffle and the shell wall, and the baffle spacing determines the parallel and cross-flow velocities that affect heat transfer and pressure drop. Often the shell side of an exchanger is subject to low-pressure drop limitations, and the baffle patterns must be arranged to meet these specified conditions and at the same time provide maximum effectiveness for heat transfer. The plate material used for these supports and baffles should not be too thin and is usually minimum thick-... [Pg.26]

Many factors affect heat transfer rates for example velocity tube wall temperature and pressure drop. These rates listed do not represent the limit, but are suggested values for study and estimating. [Pg.231]

Wall temperatures drop after reaching the maximum in the case of the two highest heat flux levels in Fig. 8, and this is due to increasing convective heat transfer through the steam film, which now completely blankets the surface. The improved heat transfer is caused by the higher flow velocities in the tube as more entrained liquid is evaporated. Finally, at about 100% quality, based on the assumption of thermal equilibrium, only steam is present, and wall temperatures rise once more due to decreasing heat-transfer coefficients as the steam becomes superheated. [Pg.225]

Derive an expression relating the pressure drop for the turbulent flow of a fluid in a pipe to the heat transfer coefficient at the walls on the basis of the simple Reynolds analogy. Indicate the assumptions which are made and the conditions under which you would expect it to apply closely. Air at 320 K and atmospheric pressure is flowing through a smooth pipe of 50 mm internal diameter, and the pressure drop over a 4 m length is found to be 150 mm water gauge. By how much would you expect the air temperature to fall over the first metre if the. wall temperature there is 290 K ... [Pg.846]

The heat transfer and pressure drop in a rectangular channel with sintered porous inserts, made of stainless steels of different porosity, were investigated. The experimental set-up is shown in Fig. 2.9. Heat fluxes up to 6MW/m were removed by using samples with a porosity of 32% and an average pore diameter of 20 pm. Under these experimental conditions, the temperature difference between the wall and the bulk water did not exceed AT = 55 K at a pressure drop of AP = 4.5 bars (Hetsroni et al. 2006a). [Pg.18]

On the other hand Bao et al. (2000) reported that the measured heat transfer coefficients for the air-water system are always higher than would be expected for the corresponding single-phase liquid flow, so that the addition of air can be considered to have an enhancing effect. This paper reports an experimental study of non-boiling air-water flows in a narrow horizontal tube (diameter 1.95 mm). Results are presented for pressure drop characteristics and for local heat transfer coefficients over a wide range of gas superficial velocity (0.1-50m/s), liquid superficial velocity (0.08-0.5 m/s) and wall heat flux (3-58 kW/m ). [Pg.244]

The temperature distribution has a characteristic maximum within the liquid domain, which is located in the vicinity of the evaporation front. Such a maximum results from two opposite factors (1) heat transfer from the hot wall to the liquid, and (2) heat removal due to the liquid evaporation at the evaporation front. The pressure drops monotonically in both domains and there is a pressure jump at the evaporation front due to the surface tension and phase change effect on the liquid-vapor interface. [Pg.382]

Heat transfer problems become more severe as reaction rates are increased and water-to-monomer ratios are reduced. In addition, as reactor sizes are increased for improved process economics, the amount of wall heat transfer surface area per unit volume will drop and result in a lower reactor space-time yield. [Pg.92]

Values for the various parameters in these equations can be estimated from published correlations. See Suggestions for Further Reading. It turns out, however, that bubbling fluidized beds do not perform particularly well as chemical reactors. At or near incipient fluidization, the reactor approximates piston flow. The small catalyst particles give effectiveness factors near 1, and the pressure drop—equal to the weight of the catalyst—is moderate. However, the catalyst particles are essentially quiescent so that heat transfer to the vessel walls is poor. At higher flow rates, the bubbles promote mixing in the emulsion phase and enhance heat transfer, but at the cost of increased axial dispersion. [Pg.416]

The heat transfer coefficient at the inside wall and pressure drop through the coil can be estimated using the correlations for flow through pipes see Section 12.8 and Volume 1, Chapters 3 and 9. Correlations for forced convection in coiled pipes are also given in the Engineering Sciences Data Unit Design Guide, ESDU 78031 (2001). [Pg.778]

Estimate the heat transfer coefficient at the outside wall of the reactor and the pressure drop through the jacket. [Pg.780]

The constants in the heat transfer and pressure drop correlations are functions of the fluid physical properties, volumetric flowrate, tube size and pitch. In preliminary design, it is reasonable to assume either 20 mm outside diameter tubes with a 2 mm wall thickness or 25 mm outside diameter tubes with 2.6 mm wall thickness. The tube pitch is normally taken to be pj = l.25do- A square tube pitch configuration can be assumed as a conservative assumption. Baffle cut can be assumed to be 0.25 in preliminary design. [Pg.666]

Two-phase flows are classified by the void (bubble) distributions. Basic modes of void distribution are bubbles suspended in the liquid stream liquid droplets suspended in the vapor stream and liquid and vapor existing intermittently. The typical combinations of these modes as they develop in flow channels are called flow patterns. The various flow patterns exert different effects on the hydrodynamic conditions near the heated wall thus they produce different frictional pressure drops and different modes of heat transfer and boiling crises. Significant progress has been made in determining flow-pattern transition and modeling. [Pg.33]


See other pages where Heat transfer wall-drop is mentioned: [Pg.322]    [Pg.595]    [Pg.175]    [Pg.91]    [Pg.128]    [Pg.484]    [Pg.8]    [Pg.248]    [Pg.438]    [Pg.1097]    [Pg.1140]    [Pg.1233]    [Pg.2115]    [Pg.96]    [Pg.695]    [Pg.517]    [Pg.694]    [Pg.851]    [Pg.160]    [Pg.340]    [Pg.109]    [Pg.338]    [Pg.199]    [Pg.194]    [Pg.465]    [Pg.20]    [Pg.76]    [Pg.110]    [Pg.212]   
See also in sourсe #XX -- [ Pg.277 , Pg.279 ]




SEARCH



Wall heat transfer

© 2024 chempedia.info