Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Heat resistance polyesters

During the period of development of these materials work proceeded on heat-resistant polyesters. It was found, for example, that reaction of resorcinol with terephthalyl chloride gave a polymer that showed no signs of melting below 500°C Figure 25.21). [Pg.730]

Tanaka Takumi, Method of obtaining heat-resistant polyesters with the use of diglycedil-substituted diimides. Patent of the USA No 4459391. Published in 1984 (in Russian). [Pg.175]

Polyester resin - glass fiber Melamine resin - glass fiber Silicone resin - glass fiber Triallylcyanurate resin (TAG) -glass fiber (heat resistant polyester)... [Pg.844]

Nakajima, T, and Tsukamoto, K. (2005) Polycondensation catalysts with high catalytic activity for preparation of heat-resistant polyesters with decreased foreign matter content, JP 2005023160, Jpn. Kokai Tokkyo Koho,... [Pg.423]

A preaccelerated, low viscosity, thixotropic halogenated and heat resistant polyester with a low flame spread (ASTM E-84 <25). Suitable for hand-lay, spray/prqjection lamination and filament winding in the manufacture of for example, hoods and ducts for handling gases and vapours. Can also be used for architectural and modular applications as well as a rigidizing materials for acrylics. [Pg.155]

An unaccelerated, low viscosity, chemical and heat resistant polyester for resin transfer moulding. [Pg.156]

In other areas, POD has been used to improve the wear resistance of a mbber latex binder by incorporation of 25% of Oksalon fibers. Heat-resistant laminate films, made by coating a polyester film with POD, have been used as electrical insulators and show good resistance to abrasion and are capable of 126% elongation. In some instances, thin sheets of PODs have been used as mold release agents. For this appHcation a resin is placed between the two sheets of POD, which is then pressed in a mold, and the sheets simply peel off from the object and mold after the resin has cured. POD-based membranes exhibit salt rejection properties and hence find potential as reverse osmosis membranes in the purification of seawater. PODs have also been used in the manufacturing of electrophotographic plates as binders between the toner and plate. These improved binders produce sharper images than were possible before. [Pg.535]

A Methylolhydantoins. l,3-Bis(hydroxymethyl)-5,5-dimethyIhydantoia [6440-58-0] is used extensively as a preservative in cosmetic and industrial appHcations, and carries EPA registration for the industrial segment. It is available in soHd and in aqueous solution forms, including low free formaldehyde versions of the latter. A related derivative, l,3-bis(hydroxyethyl)-5,5-dimethyIhydantoia [26850-24-8] is used in the manufacture of high temperature polyesters, polyurethanes, and coatings, offering improved heat resistance, uv stabiUty, flexibiUty, and adhesion. [Pg.255]

A polyester-type fluorescent resin matrix (22) is made by heating trimellitic anhydride, propylene glycol, and phthaUc anhydride with catalytic amounts of sulfuric acid. Addition of Rhodamine BDC gives a bright bluish red fluorescent pigment soluble in DME and methanol. It has a softening point of 118°C. Exceptional heat resistance and color brilliance are claimed for products of this type, which are useful for coloring plastics. [Pg.301]

Small amounts of TAIC together with DAP have been used to cure unsaturated polyesters in glass-reinforced thermo sets (131). It has been used with polyfunctional methacrylate esters in anaerobic adhesives (132). TAIC and vinyl acetate are copolymerized in aqueous suspension, and vinyl alcohol copolymer gels are made from the products (133). Electron cure of poly(ethylene terephthalate) moldings containing TAIC improves heat resistance and transparency (134). [Pg.88]

SiHcone resins provide coatings having outstanding heat resistance and exterior durabiHty. The cost is relatively high but for specialized appHcations these resins are important binders (64). Silicone-modified acryHc and polyester resins provide binders having intermediate durabiHty properties and cost. Fluorinated polymers also exhibit outstanding durabiHty properties. High cost, however, limits appHcabiHty. [Pg.341]

To optimize the lesin system foi a given process and part, consideration should be given to fillers that can gready affect the cost and performance of the composite. Because of their low viscosity, fillers can often be added to polyesters. Fillers are often much cheaper than the resin they displace, and they can improve the heat resistance, stiffness, and hardness of the composite. Certain fillers, such as fumed siUca, impart thixotropy to the resin, increasing its resistance to drainage. [Pg.19]

Most polyesters (qv) are based on phthalates. They are referred to as aromatic-aHphatic or aromatic according to the copolymerized diol. Thus poly(ethylene terephthalate) [25038-59-9] (PET), poly(butyelene terephthalate) [24968-12-5] (PBT), and related polymers are termed aromatic-aHphatic polyester resins, whereas poly(bisphenol A phthalate)s are called aromatic polyester resins or polyarylates PET and PBT resins are the largest volume aromatic-aHphatic products. Other aromatic-aHphatic polyesters (65) include Eastman Kodak s Kodar resin, which is a PET resin modified with isophthalate and dimethylolcyclohexane. Polyarylate resins are lower volume specialty resins for high temperature (HDT) end uses (see HeaT-RESISTANT POLYAffiRS). [Pg.267]

The successful introduction of the polyimides stimulated attempts to produce somewhat more tractable materials without too serious a loss of heat resistance. This led to the availability of a polyamide-imides, polyester-imides and the polybismaleinimides, and in 1982 the polyether-imides. [Pg.521]

Films have been used for insulating electric motors, in capacitors requiring a heat resistance not met by conventional polyester and polycarbonate dielectrics and as a soldering-resistant base for flexible printed circuits. [Pg.610]

Polymers with no pretence of high heat resistance but which complement the existing range of thermoplastics used mainly in light engineering application, e.g. phenoxies and aromatic polyesters. [Pg.611]

Highly aromatic thermoplastic polyesters first beeame available in the 1960s but the original materials were somewhat difficult to process. These were followed in the 1970s by somewhat more processable materials, commonly referred to as polyarylates. More recently there has been considerable activity in liquid crystal polyesters, which are in interest as self-reinforeing heat-resisting engineering thermoplastics. [Pg.695]

Because of their favourable price, polyesters are preferred to epoxide and furane resins for general purpose laminates and account for at least 95% of the low-pressure laminates produced. The epoxide resins find specialised uses for chemical, electrical and heat-resistant applications and for optimum mechanical properties. The furane resins have a limited use in chemical plant. The use of high-pressure laminates from phenolic, aminoplastic and silicone resins is discussed elsewhere in this book. [Pg.707]

With a somewhat lower level of heat resistance but with many properties that make them of interest as engineering materials alongside the polycarbonates, polysulphones, poly(phenylene sulphides) and polyketones are the so-called polyarylates which are defined as polyester from bis-phenols and dicarboxylic acids. [Pg.731]

In Chapters 3 and 11 reference was made to thermoplastic elastomers of the triblock type. The most well known consist of a block of butadiene units joined at each end to a block of styrene units. At room temperature the styrene blocks congregate into glassy domains which act effectively to link the butadiene segments into a rubbery network. Above the Tg of the polystyrene these domains disappear and the polymer begins to flow like a thermoplastic. Because of the relatively low Tg of the short polystyrene blocks such rubbers have very limited heat resistance. Whilst in principle it may be possible to use end-blocks with a higher Tg an alternative approach is to use a block copolymer in which one of the blocks is capable of crystallisation and with a well above room temperature. Using what may be considered to be an extension of the chemical technology of poly(ethylene terephthalate) this approach has led to the availability of thermoplastic polyester elastomers (Hytrel—Du Pont Amitel—Akzo). [Pg.737]

Compared with the polyesters the epoxide resins generally have better mechanical properties and, using appropriate hardeners, better heat resistance and chemical resistance, in particular, resistance to alkalis. [Pg.773]

Compared with the phenolics and polyesters the resins have better heat resistance, better chemical resistance, particularly to alkalis, greater hardness and better water resistance. In these respects they are similar to, and often slightly superior to, the epoxide resins. Unlike the epoxides they have a poor adhesion to wood and metal, this being somewhat improved by incorporating plasticisers such as poly(vinyl acetate) and poly(vinyl formal) but with a consequent reduction in chemical resistance. The cured resins are black in colour. [Pg.812]

If polypropylene is too hard for the purpose envisaged, then the user should consider, progressively, polyethylene, ethylene-vinyl acetate and plasticised PVC. If more rubberiness is required, then a vulcanising rubber such as natural rubber or SBR or a thermoplastic polyolefin elastomer may be considered. If the material requires to be rubbery and oil and/or heat resistant, vulcanising rubbers such as the polychloroprenes, nitrile rubbers, acrylic rubbers or hydrin rubbers or a thermoplastic elastomer such as a thermoplastic polyester elastomer, thermoplastic polyurethane elastomer or thermoplastic polyamide elastomer may be considered. Where it is important that the elastomer remain rubbery at very low temperatures, then NR, SBR, BR or TPO rubbers may be considered where oil resistance is not a consideration. If, however, oil resistance is important, a polypropylene oxide or hydrin rubber may be preferred. Where a wide temperature service range is paramount, a silicone rubber may be indicated. The selection of rubbery materials has been dealt with by the author elsewhere. ... [Pg.896]

Specialty waxes include polar waxes for more polar adhesive systems. Examples would be castor wax (triglyceride of 12-hydroxy stearic acid) or Paracin wax N- 2 hydroxy ethyl)-12-hydroxy stearamide) which are used in polyester, polyamide, or with high VA EVA copolymer-based systems. Other common polar waxes are maleated polyethylenes, which are used to improve the specific adhesion of polyethylene-based adhesives, and low molecular weight ethylene copolymers with vinyl acetate or acrylic acid, which are used to improve low temperature adhesion. High melting point isotactic polypropylene wax (7 155°C) and highly refined paraffin wax (7,n 83°C) are used where maximum heat resistance is critical. Needless to say, these specialty waxes also command a premium price, ranging from 2 to 5 times that of conventional paraffin wax. [Pg.727]

Certain polymers have come to be considered standard building blocks of the polyblends. For example, impact strength may be improved by using polycarbonate, ABS and polyurethanes. Heat resistance is improved by using polyphenylene oxide, polysulphone, PVC, polyester (PET and PBT) and acrylic. Barrier properties are improved by using plastics such as ethylene vinyl alchol (EVA). Some modem plastic alloys and their main characteristics are given in Table 1.2. [Pg.11]

The current-carrying capacity of the wire is not directly related to the dielectric. This is determined by the conductor resistance and the heating effect that it produces in the wire. The required current-carrying capacity determines the size of the wire and thus the size of the insulator. The temperature rise caused by the current flow determines the type of insulation to be used. If the wire is limited to 140°F (60°C) service, the insulation can be one of those discussed above. If the wire is to operate at 300°F (150° C), another specification for plastic wire with better heat resistance such as TP polyester or PTFE is used. [Pg.224]

Fig. 6-14 specific modulus = modulus/density. Plastics include use of the heat-resistant TPs such as the polimides, polyamide-imide, and others. Table 6-21 provides data on the thermal properties of RPs. To date at least 80 wt % are glass fiber and about 60 wt% of those are polyester (TS) type RPs. [Pg.356]

Different materials can be used such as nylon, polyester (TS), and epoxy, but TS polyurethane (PUR) is predominantly used. Almost no other plastic has the range of properties of PUR. Modulus of elasticity range in bending is 200 to 1,400 MPa (29,000-203,000 psi) and heat resistance from 90 to over 200°C (122-392°F). The higher values are for chopped glass-fiber-reinforced RIM (RRIM). [Pg.528]

Siloxane containing polyester, poly(alkylene oxide) and polystyrene type copolymers have been used to improve the heat resistance, lubricity and flow properties of epoxy resin powder coatings 43). Thermally stable polyester-polysiloxane segmented copolymers have been shown to improve the flow, antifriction properties and scratch resistance of acrylic based auto repair lacquers 408). Organohydroxy-terminated siloxanes are also effective internal mold release agents in polyurethane reaction injection molding processes 409). [Pg.74]


See other pages where Heat resistance polyesters is mentioned: [Pg.109]    [Pg.495]    [Pg.109]    [Pg.495]    [Pg.452]    [Pg.86]    [Pg.143]    [Pg.488]    [Pg.331]    [Pg.321]    [Pg.18]    [Pg.609]    [Pg.879]    [Pg.790]    [Pg.934]    [Pg.430]    [Pg.18]    [Pg.26]    [Pg.565]    [Pg.1026]    [Pg.715]   
See also in sourсe #XX -- [ Pg.232 ]




SEARCH



Heat-resistant

© 2024 chempedia.info