Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Heat required temperature

Steam sterilization by autoclaving at 121 °C is the most widely employed method today but it may induce hydrolysis and/or melting of the polymer matrix and is, in effect, not recommendable for degradable polymers [313,314]. Sterilization by dry heat requires temperatures of 160-170 °C for two hours or more. These conditions may cause melting, distortion, and/or degradation of the polymer and the technique is thus of limited use for most polymeric materials. [Pg.102]

In conclusion, it becomes clear that the process heating requirement (temperature profile) will still remain the most important issue in determining the viability of solar thermal energy supply. Any intensified reactor with high heat transfer coefficients will be a promising candidate for integrating solar heat with the process temperature profile (rather than the process temperature) mainly determining the technical and economical sensibihty. [Pg.319]

British thermal unit (Btu) The most commonly used industrial heal unit the amount of heat required to raise 1 lb of water through UF under specified conditions. Since the specific heat of water varies, particularly with temperature, the actual value of Btu is dependent on the conditions chosen as stan-... [Pg.67]

The fiimace E is now switched on, and takes about 20 minutes before the combustion tube packing has reached the required temperature. After 15 minutes, carbon dioxide is again passed for 5 minutes, and the apparatus tested as before for the appearance of micro-bubbles. If these are not at first obtained, the sweeping-out process must be continued until they do appear. Now that the combustion-tube packing is heated up to the required temperature and the apparatus filled with carbon dioxide, all air being swept out, the combustion may be started. [Pg.489]

Many materials need to be dried prior to their analysis to remove residual moisture. Depending on the material, heating to a temperature of 110-140 °C is usually sufficient. Other materials need to be heated to much higher temperatures to initiate thermal decomposition. Both processes can be accomplished using a laboratory oven capable of providing the required temperature. [Pg.29]

The treatment of heat capacity in physical chemistry provides an excellent and familiar example of the relationship between pure and statistical thermodynamics. Heat capacity is defined experimentally and is measured by determining the heat required to change the temperature of a sample in, say,... [Pg.506]

Product temperature below space temperature (producing a credit to sensible-heat gain or a heating requirement)... [Pg.360]

The heat pipe has properties of iaterest to equipmeat desigaers. Oae is the teadeacy to assume a aeady isothermal coaditioa while carrying useful quantities of thermal power. A typical heat pipe may require as Htfle as one thousandth the temperature differential needed by a copper rod to transfer a given amount of power between two poiats. Eor example, whea a heat pipe and a copper rod of the same diameter and length are heated to the same iaput temperature (ca 750°C) and allowed to dissipate the power ia the air by radiatioa and natural convection, the temperature differential along the rod is 27°C and the power flow is 75 W. The heat pipe temperature differential was less than 1°C the power was 300 W. That is, the ratio of effective thermal conductance is ca 1200 1. [Pg.511]

Reinforced Thermoplastic Sheet. This process uses precombined sheets of thermoplastic resin and glass fiber reinforcement, cut into blanks to fit the weight and size requirements of the part to be molded. The blanks, preheated to a specified temperature, are loaded into the metal mold and the material flows under mol ding pressure to fiU the mold. The mold is kept closed under pressure until the temperature of the part has been reduced, the resin solidified, and demolding is possible. Cycle time, as with thermosetting resins, depends on the thickness of the part and the heat distortion temperature of the resin. Mol ding pressures are similar to SMC, 10—21 MPa (1500—3000 psi), depending on the size and complexity of the part. [Pg.96]

Measurements of stress relaxation on tempering indicate that, in a plain carbon steel, residual stresses are significantly lowered by heating to temperatures as low as 150°C, but that temperatures of 480°C and above are required to reduce these stresses to adequately low values. The times and temperatures required for stress reUef depend on the high temperature yield strength of the steel, because stress reUef results from the localized plastic flow that occurs when the steel is heated to a temperature where its yield strength is less than the internal stress. This phenomenon may be affected markedly by composition, and particularly by alloy additions. [Pg.391]

The most widely used sterilization method ia the food industry is moist heat. The heat is usually suppHed by high pressure steam, but because most foods already contain moisture the role of steam is to heat the food to the required temperature. The cooking and sterilization processes can frequendy be combined into one. The food may be sealed into impervious containers of glass, metal, or plastic film and undergo terminal sterilization, or it may be presterilized in batches or in a continuous operation and then filled into a presterilized container. The latter process is called sterile filling. [Pg.411]

There are four types of food sterilization processes terminal sterilization in prefiUed containers in a batchwise process terminal sterilization in prefiUed containers of appropriate design heated to the required temperatures in a continuous process aseptic filling foUowing batchwise cooking in an appropriate retort and aseptic filling in a continuous cooking system equipped with appropriate valves to aUow the necessary pressures for attainment of the required sterilization temperatures. [Pg.411]

Spent acid burning is actually a misnomer, for such acids are decomposed to SO2 and H2O at high temperatures in an endothermic reaction. Excess water in the acid is also vaporized. Acid decomposition and water vaporization require considerable heat. Any organic compounds present in the spent acid oxidize to produce some of the required heat. To supply the additional heat required, auxiUary fuels, eg, oil or gas, must be burned. When available, sulfur and H2S are excellent auxiUary fuels. [Pg.184]

Overall comparison between amine and carbonate at elevated pressures shows that the amine usually removes carbon dioxide to a lower concentration at a lower capital cost but requires more maintenance and heat. The impact of the higher heat requirement depends on the individual situation. In many appHcations, heat used for regeneration is from low temperature process gas, suitable only for boiler feed water heating or low pressure steam generation, and it may not be usefiil in the overall plant heat balance. [Pg.22]


See other pages where Heat required temperature is mentioned: [Pg.17]    [Pg.465]    [Pg.17]    [Pg.465]    [Pg.267]    [Pg.362]    [Pg.263]    [Pg.238]    [Pg.2768]    [Pg.129]    [Pg.155]    [Pg.202]    [Pg.206]    [Pg.266]    [Pg.267]    [Pg.353]    [Pg.452]    [Pg.573]    [Pg.580]    [Pg.273]    [Pg.518]    [Pg.427]    [Pg.497]    [Pg.156]    [Pg.466]    [Pg.43]    [Pg.235]    [Pg.368]    [Pg.347]    [Pg.349]    [Pg.97]    [Pg.368]    [Pg.411]    [Pg.183]    [Pg.318]    [Pg.200]    [Pg.333]    [Pg.506]    [Pg.208]   
See also in sourсe #XX -- [ Pg.218 ]




SEARCH



Heat required

Temperature requirements

© 2024 chempedia.info