Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Micro-bubbles

M 10c] [M 11] [P 9] [P 10] In multiple-bubble micro chambers, even tighter control of fluid motion and mixing is feasible [23, 24], The micro streaming fields around each bubble interfere with the other. The dye is moved from one side of the chamber to the other. [Pg.38]

Hold the tube horizontally and quickly seal this end in a micro-burner. Attach the tube (with the open end upwards) to a thermometer in the melting-point apparatus (Fig. i(c), p. 3) so that the trapped bubble of air in the capillary tube is below the surface of the bath-liquid. Now heat the bath, and take as the b.p. of the liquid that temperature at which the upper level of the bubble reaches the level of the surface of the batn liquid. [Pg.60]

The fiimace E is now switched on, and takes about 20 minutes before the combustion tube packing has reached the required temperature. After 15 minutes, carbon dioxide is again passed for 5 minutes, and the apparatus tested as before for the appearance of micro-bubbles. If these are not at first obtained, the sweeping-out process must be continued until they do appear. Now that the combustion-tube packing is heated up to the required temperature and the apparatus filled with carbon dioxide, all air being swept out, the combustion may be started. [Pg.489]

The Evolution of Methyl Iodide. The flask A (Fig. 89) is now heated with the non-luminous flame of the micro-burner. The immediate result of the heating will be an increase in the rate of bubbles passing up the absorption spiral no endeavour should be made to decrease this flow, however, as it will return to the original rate as soon as the hydro-... [Pg.500]

Other imaging techniques such as magnetic resonance and ultrasound have opened up avenues of tremendous potential for contrast medium enhancement (123). Ultrasound contrast media developments have centered around encapsulated air micro-bubbles. Magnetic resonance contrast agents iavolve metal—ligand complexes and have evolved from ionic to nonionic species, much as radiopaques have. [Pg.470]

Fein-arbeit, /. fine or delicate work (Metal.) refining, -aufspaltung, /. fine separation, -bau, m. fine structure, -bewegung, /. (Micros., etc.) slow motion, fine adjustment, feinblasig, a. having minute bubbles or blisters. Fein-blech, n. (Metal.) thin plate, sheet. [Pg.149]

There several DO probes available. Some well-known branded fermenters, like New Brunswick, Bioflo series and the B. Braun Biotstat B fermenters are equipped with a DO meter. This unit has a 2 litre fermentation vessel equipped with DO meter and pH probe, antifoam sensor and level controllers for harvesting culture. The concentration of DO in the media is a function of temperature. The higher operating temperature would decrease the level of DO. A micro-sparger is used to provide sufficient small air bubbles. The air bubbles are stabilized in the media and the liquid phase is saturated with air. The availability of oxygen is major parameter to be considered in effective microbial cell growth rate. [Pg.15]

Notably, the higher the mass flux, the earlier annular flow is reached. Bubbly flow is more or less non-existent for mass fluxes exceeding 1,000 kg/m s. The most important observation about the flow patterns is that their transitions are controlled primarily by the rate of coalescence, which is not recognized as a contributing factor by any of the micro-scale or macro-scale flow pattern maps. [Pg.46]

Fig. 2.32 Diabatic flow pattern map for vaporizing flow in uniformly heated micro-channel, R-134a, d = 0.5 mm, L = 70 mm, Tg = 30 °C, = 50 kW/m without subcooling at inlet. Flow patterns isolated bubble regime (IB), coalescing bubble regime (CB), annular (completely coalesced) regime (A), post-dryout regime (PD). Reprinted from Thome et al. (2006) with permission... Fig. 2.32 Diabatic flow pattern map for vaporizing flow in uniformly heated micro-channel, R-134a, d = 0.5 mm, L = 70 mm, Tg = 30 °C, = 50 kW/m without subcooling at inlet. Flow patterns isolated bubble regime (IB), coalescing bubble regime (CB), annular (completely coalesced) regime (A), post-dryout regime (PD). Reprinted from Thome et al. (2006) with permission...
After venting of the elongated bubble, the region of liquid droplets begins. The vapor phase occupies most of the channel core. The distinctive feature of this region is the periodic dryout and wetting phenomenon. The duration of the two-phase period, i.e., the presence of a vapor phase and micro-droplet clusters on the heated wall, affects the wall temperature and heat transfer in micro-channels. As the heat flux increases, while other experimental conditions remain unchanged, the duration of the two-phase period decreases, and CHF is closer. [Pg.54]

Steam-liquid flow. Two-phase flow maps and heat transfer prediction methods which exist for vaporization in macro-channels and are inapplicable in micro-channels. Due to the predominance of surface tension over the gravity forces, the orientation of micro-channel has a negligible influence on the flow pattern. The models of convection boiling should correlate the frequencies, length and velocities of the bubbles and the coalescence processes, which control the flow pattern transitions, with the heat flux and the mass flux. The vapor bubble size distribution must be taken into account. [Pg.91]

Part 1. Presentation of the model. Int J Heat Mass Transfer 47 3375-3385 Tiselj I, Hetsroni G, Mavko B, Mosyak A, Pogrebnyak E, Segal Z (2004) Effect of axial conduction on the heat transfer in micro-channels Int J Heat Mass Transfer 47 2551-2565 Triplett KA, Ghiaasiaan SM, Abdel-Khalik SI, Sadowski DL (1999) Gas-liquid two-phase flow in microchannels. Part I. Two-phase flow patterns. Int J Multiphase Flow 25 377-394 Tsai J-H, Lin L (2002) Transient thermal bubble formation on polysihcon micro-resisters. J Heat Transfer 124 375-382... [Pg.97]

In the study by Qu et al. (2004), experiments were conducted with adiabatic nitrogen-water two-phase flow in a rectangular micro-channel. The bubbly, stratified and churn flow patterns commonly encountered in macro-channels were never observed in the study. No water droplets were observed in the nitrogen bubble, nor were any nitrogen bubbles present in the water slugs. [Pg.204]

Figure 5.9 shows various interesting aspects of two-phase flow patterns obtained in this observation. It should be noticed from these pictures that a variety of two-phase flow patterns were encountered in a clean micro-channel. The authors noticed that in a very clean tube, many small individual bubbles flow in a discrete way in the tube without coalescence in bubbly flow. The most interesting thing is the special flow pattern given in Fig. 5.9d, where several bubbles with various shapes are connected in a series by the gas stems located at the tube center line. The liquid ring flow is also clearly seen in Fig. 5.9e. [Pg.208]

For all flow conditions tested in that study, a bubbly flow pattern with bubbles much smaller than the channel diameter (100 pm) was never observed. While liquid-only flows (or liquid slugs) containing small spherical bubbles were not observed, small droplets were observed inside gas core flows. Furthermore, no stratified flow occurred in the micro-channel as reported in previous studies of two-phase flow patterns in channels with a diameter close to 1 mm (Damianides and Westwater 1988 Fukano and Kariyasaki 1993 Triplett et al. 1999a Zhao and Bi 2001a). [Pg.210]


See other pages where Micro-bubbles is mentioned: [Pg.39]    [Pg.839]    [Pg.966]    [Pg.39]    [Pg.839]    [Pg.966]    [Pg.1942]    [Pg.478]    [Pg.489]    [Pg.489]    [Pg.490]    [Pg.499]    [Pg.86]    [Pg.508]    [Pg.1422]    [Pg.319]    [Pg.322]    [Pg.238]    [Pg.603]    [Pg.729]    [Pg.23]    [Pg.4]    [Pg.13]    [Pg.22]    [Pg.27]    [Pg.43]    [Pg.48]    [Pg.52]    [Pg.53]    [Pg.53]    [Pg.56]    [Pg.91]    [Pg.94]    [Pg.94]    [Pg.95]    [Pg.195]    [Pg.201]    [Pg.212]    [Pg.221]   
See also in sourсe #XX -- [ Pg.298 ]




SEARCH



© 2024 chempedia.info