Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Half-lives, environmental

Environmental Concerns. Few data on the environmental effects of the nitroparaffins are available. However, they are known to be of low toxicity to the fathead minnow (109). Based on their uv spectra, the nitroparaffins would be expected to undergo photolysis in the atmosphere. The estimated half-life of 2-nitropropane in the atmosphere is 3.36 h (110). Various values have been determined for the half-life of nitromethane, but it is similar to 2-nitropropane in persistence (111). Reviews of the available data on the environmental effects of nitromethane and 2-nitropropane have been pubhshed by the U.S. Environmental Protection Agency (112,113). [Pg.103]

The rate and extent of pesticide metaboHsm can vary dramatically, depending on chemical stmcture, the number of specific pesticide-degrading microorganisms present and their affinity for the pesticide, and environmental parameters. The extent of metaboHsm can vary from relatively minor transformations which do not significantly alter the chemical or toxicological properties of the pesticide, to mineralisation, ie, degradation to CO2, H2O, NH" 4, Cf, etc. The rate of metaboHsm can vary from extremely slow (half-life of years) to rapid (half-life of days). [Pg.215]

Linear alkylbenzenesulfonate showed no deleterious effect on agricultural crops exposed to this material (54,55). Kinetics of biodegradation have been studied in both wastewater treatment systems and natural degradation systems (48,57,58). Studies have concluded that linear alkylbenzenesulfonate does not pose a risk to the environment (50). Linear alkylbenzenesulfonate has a half-life of approximately one day in sewage sludge and natural water sources and a half-life of one to three weeks in soils. Aquatic environmental safety assessment has also shown that the material does not pose a hazard to the aquatic environment (56). [Pg.99]

Miscellaneous Reactions. Ethylene oxide is considered an environmental pollutant. A study has determined the half-life of ethylene oxide ia the atmosphere (82,83). Autodecomposition of ethylene oxide vapor occurs at - 500° C at 101.3 kPa (1 atm) to give methane, carbon monoxide, hydrogen, and ethane (84—86). [Pg.454]

For a radionuclide to be an effective oceanic tracer, various criteria that link the tracer to a specihc process or element must be met. Foremost, the environmental behavior of the tracer must closely match that of the target constituent. Particle affinity, or the scavenging capability of a radionuclide to an organic or inorganic surface site i.e. distribution coefficient, Kf, is one such vital characteristic. The half-life of a tracer is another characteristic that must also coincide well with the timescale of interest. This section provides a brief review of the role of various surface sites in relation to chemical scavenging and tracer applications. [Pg.41]

The half-life, f1/2, of a substance is the time needed for its concentration to fall to one-half its initial value. Knowing the half-lives of pollutants such as chlorofluoro-carbons allows us to assess their environmental impact. If their half-lives are short, they may not survive long enough to reach the stratosphere, where they can destroy ozone. Half-lives are also important in planning storage systems for radioactive materials, because the decay of radioactive nuclei is a first-order process. [Pg.663]

A recent method to screen the urine for alkyl phosphates as an indicator of exposure to organophosphate insecticides shows that the method can be used to determine environmental exposure to a specific organophosphate pesticide. The method was found to be sensitive, identifying low levels of exposure to insecticides in the environment by quantitation of urinary phosphates (Davies and Peterson 1997). The test is limited in that it is only useful for assessing recent exposure, due to the short half-life of the organophosphate pesticides. [Pg.170]

Half-life—A measure of rate for the time required to eliminate one half of a quantity of a chemical from the body or environmental media. [Pg.242]

Firemaster is a stable solid, resembling a PCB mixture in its lipophilicity, chemical and thermal stability, and low vapor pressure. Firemaster contains some 80 ont of a possible 209 PBB congeners, but just two of them— 2,2, 4,4, 5,5-hexabromobiphenyl and 2,2, 3,4,4, 5,5, heptabromobiphenyl—account for around 85% of the commercial product (Environmental Health Criteria 152). These two componnds were fonnd to be very slowly eliminated by humans exposed to them during the Michigan incident. A half-life of abont 69 weeks was estimated for 2,4,5,2,4, 5 -HBB. [Pg.149]

Pyrethroids can also persist in sediments. In one study, alpha-cypermethrin was applied to a pond as an emulsifiable concentrate (Environmental Health Criteria 142). After 16 days of application, 5% of the applied dose was still present in sediment, falling to 3% after a further 17 days. This suggests a half-life of the order of 20-25 days—comparable in magnitude to half-lives measured in temperate soils. [Pg.235]

It is relevant also to compare the results in Fig.5 with previously published data for PAC production under similar environmental conditions, where with higher concentrations of initial benzaldehyde (600 mM), pyruvate (400 mM) and PDC activity (8.4 U ml ) a similar maximum concentration of PAC of 330 mM was produced [6]. PDC stability was similar in both processes with half life values of approximately 27h. However, PAC production was much faster in the benzaldehyde emulsion system, presumably due to higher initial enzyme concentration. [Pg.29]

This property of organophosphate esters may be of environmental importance since phosphoric acid diesters are much more soluble and very little is known concerning the environmental toxicity of these compounds. The available data do not provide sufficient descriptions of the experimental methods to determine if the rates are reliable (Barnard et al. 1961 Ciba-Geigy 1984e, 1986 Howard and Deo 1979 Mayer et al. 1981 Wolfe 1980). The majority of reports provide only a minimum of information and exclude important facts such as the duration of the experiments and the concentration of buffers. Despite the lack of experimental detail, published rate constants for base-catalyzed hydrolysis appear to be reasonably consistent and suggest that the hydrolytic half-life of triphenyl phosphate will vary from... [Pg.302]

Half-life estimates of approximately 28 days for thiophanate-methyl indicate a very slow decay compared to methiocarb with an estimate of half-life of about 11 days. The application of a model based on a first-order decay process resulted in fairly high R2 and significant fit. The results suggest that both pesticides are relatively stable compared to other compounds under similar environmental conditions (Brouwer et al., 1994). With respect to the objectives of the study and the proposed model, it can be stated that the results confirm the assumption of a linear relationship between application rate (for both application techniques) and the increase of dislodgeable foliar residue. This relationship holds for modeling purposes. The contribution of the crop density or total crop surface area to the process of interception cannot be quantified with the results of the present study. Because the interception factor ranges from about 0.35 to 0.9 (Willis and McDowell, 1987), the... [Pg.135]

If the environmental temperature is constant, the racemization process takes place at a uniform rate, which is determined, at any time during the process, by the relative amounts of / and d forms of the amino acid can be measured. As the racemization proceeds and the concentration of the / form amino acid decreases, the rate of racemization gradually slows down. When there is a mixture of 50% of each of the d and / forms, the racemization process stops altogether. The half-life of the racemization of aspartic acid, for example, a common amino acid in proteins, at 20°C is about 20,000 years. This half-life makes it possible to date proteins as old as about 100,000 years. So far, however, the dates obtained with the technique have proved somewhat inconsistent, probably because of the difficulty in verifying whether the temperature of the amino acids has been constant. [Pg.74]

The rate of hydrolysis of various organic chemicals, under environmental conditions can range over 14 orders of magnitude, with associated half-lifes (time for one-half of the material to disappear) as low as a few seconds to as high as 10 years and is pH dependent. It should be emphasized that if laboratory rate constant data are used in soil models and not corrected for environmental conditions — as is often the only choice — then model results should be evaluated with skepticism. [Pg.49]

De-excitation of 99mTc has specific features. This nuclide decays with a half-life of 6 hours, but its half-life varies slightly according to environmental conditions [30] or chemical states [31,32], Moreover, the emission probabilities of characteristic X-rays just after the isomeric transition 99mTc — "Tc are influenced by environmental factors [33] which result in a change of the K/VKoc X-ray intensity ratio [34],... [Pg.12]

Cadmium is nutritionally non-essential, toxic and a ubiquitous environmental pollutant. It is found in leafy vegetables, grains and cereals, and since it is present in substantial amounts in tobacco leaves, cigarette smokers on a packet a day can easily double their cadmium intake. It has a long biological half-life (17-30 years in man), accumulates in liver and kidneys and its toxicity involves principally kidney and bone (Goyer, 1997).While Cd interferes primarily with calcium, it also interacts with zinc and can induce the synthesis of metallothionein. Cadmium bound to metallothionein in liver or kidney is thought to be non-toxic, but cadmium in plasma... [Pg.343]

The Environmental Fate Rate Constants refer to specific degradation processes rather than media. As far as possible the original numerical quantities are given and thus there is a variety of time units with some expressions being rate constants and others half-lives. The conversion is that the rate constant k is 0.693/t1/2 where t,A is the half-life. [Pg.29]


See other pages where Half-lives, environmental is mentioned: [Pg.276]    [Pg.279]    [Pg.309]    [Pg.890]    [Pg.41]    [Pg.112]    [Pg.177]    [Pg.78]    [Pg.120]    [Pg.313]    [Pg.167]    [Pg.212]    [Pg.359]    [Pg.126]    [Pg.27]    [Pg.112]    [Pg.138]    [Pg.85]    [Pg.95]    [Pg.223]    [Pg.543]    [Pg.73]    [Pg.113]    [Pg.311]    [Pg.19]    [Pg.278]    [Pg.65]    [Pg.10]    [Pg.10]   
See also in sourсe #XX -- [ Pg.86 ]




SEARCH



Half-lives environmental fate

© 2024 chempedia.info