Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Glycols reaction with ketones

Diols that bear two hydroxyl groups m a 1 2 or 1 3 relationship to each other yield cyclic acetals on reaction with either aldehydes or ketones The five membered cyclic acetals derived from ethylene glycol (12 ethanediol) are the most commonly encoun tered examples Often the position of equilibrium is made more favorable by removing the water formed m the reaction by azeotropic distillation with benzene or toluene... [Pg.722]

The primary and secondary alcohol functionahties have different reactivities, as exemplified by the slower reaction rate for secondary hydroxyls in the formation of esters from acids and alcohols (8). 1,2-Propylene glycol undergoes most of the typical alcohol reactions, such as reaction with a free acid, acyl hahde, or acid anhydride to form an ester reaction with alkaU metal hydroxide to form metal salts and reaction with aldehydes or ketones to form acetals and ketals (9,10). The most important commercial appHcation of propylene glycol is in the manufacture of polyesters by reaction with a dibasic or polybasic acid. [Pg.366]

Carbonyl Compounds. Cychc ketals and acetals (dioxolanes) are produced from reaction of propylene oxide with ketones and aldehydes, respectively. Suitable catalysts iaclude stannic chloride, quaternary ammonium salts, glycol sulphites, and molybdenum acetyl acetonate or naphthenate (89—91). Lactones come from Ph4Sbl-cataly2ed reaction with ketenes (92). [Pg.135]

Historically, isobutyl alcohol was an unwanted by-product of the propylene Oxo reaction. Indeed, isobutyraldehyde the precursor of isobutyl alcohol was occasionally burned for fuel. However, more recentiy isobutyl alcohol has replaced -butyl alcohol in some appHcations where the branched alcohol appears to have preferred properties and stmcture. However, suppHes of isobutyl alcohol have declined relative to overall C-4 alcohols, especially in Europe, with the conversion of many Oxo plants to rhodium based processes which give higher normal to isobutyraldehyde isomer ratios. Further the supply of isobutyl alcohol at any given time can fluctuate greatly, since it is the lowest valued derivative of isobutyraldehyde, after neopentyl glycol, methyl isoamyl ketone and certain condensation products (10). [Pg.358]

The saturated 3-ketone can also be protected as the ethylene ketal, which is prepared directly by reaction with ethylene glycol or by exchange dioxo-lanation. Selective formation of 3-ethylenedioxy compounds is also possible, but the former method is not particularly effective in the presence of 6-, 17- or 20-ketones. However, the exchange dioxolanation technique is more sensitive to steric effects and good selectivity at C-3 can be achieved in the presence of a 17-ketone, provided the reagent does not contain glycol. ... [Pg.389]

Ketals bearing the double bond at the 4,5-position are prepared by reaction with glycol in the presence of weak acids such as adipic acid. In this case ketal formation proceeds via the intermediate 2,4-dien-3-ol ether. Hemithioketals (71) of A -3-ketones are prepared by reaction with mer-... [Pg.392]

A"" -3-Ketones are more reactive than cross-conjugated A ""-3-ketones. A"" -3,3-CycIoethylenedioxy compounds can be easily prepared by acid-catalyzed reaction with ethylene glycol or by exchange dioxolanation. 3,3-Cycloethylenedioxy-A -dienes can be prepared from 3,3-cycloethy-lenedioxy-A -enes by allylic bromination and dehydrobromination. Acid hydrolysis yields A"" -3-ketosteroids. ... [Pg.395]

Unsubstituted 20-ketones undergo exchange dioxolanation nearly with the same ease as saturated 3-ketones although preferential ketalization at C-3 can be achieved under these conditions. " 20,20-Cycloethylenedioxy derivatives are readily prepared by acid-catalyzed reaction with ethylene glycol. The presence of a 12-ketone inhibits formation of 20-ketals. Selective removal of 20-ketals in the presence of a 3-ketal is effected with boron trifluoride at room temperature. Hemithioketals and thioketals " are obtained by conventional procedures. However, the 20-thioketal does not form under mild conditions (dilution technique). ... [Pg.398]

Reaction of ketones such as 1-menthone 398 with silylated glycolic acid 417 in the presence of catalytic amounts of TMSOTf 20 provides an lil-mixture of the l,3-dioxolan-4-ones 418 and 419 [35, 36]. Likewise, other aldehydes and ketones [37, 38] and pivaldehyde [39] react with substituted silylated glycohc adds 420 a, b and yS-hydroxy acids 420c to give, e.g., 421 a, b and 421c as mixtures [37-40]. Reaction of pivaldehyde with the persilylated hydroxy acid 420 d and TMSOTf 20 to... [Pg.87]

The deoxygenation of aldehydes and ketones to the corresponding hydrocarbons via the hydrazones is known as the Wolff-Kishner reduction.28 Various modifications of the original protocols have been suggested. One of the most useful is the Huang-Minlon modification, which substituted hydrazine hydrate as a safer and less expensive replacement of anhydrous hydrazine. In addition, diethylene glycol together with sodium hydroxide was used to increase the reaction... [Pg.346]

SBA is primarily used as feedstock for methyl ethyl ketone. Other uses include hydraulic fluids, industrial cleaning compounds, paint remover, and an extracting agent for oils, perfumes, and dyes. TBA is used mostly as feedstock to make methyl methacrylate and glycol ethers (by reaction with ethylene or propylene oxides.) TBA is also a coproduct with PO, as covered in Chapter 11. [Pg.208]

In a similar manner, coccinelline (99) and precoccinelline (100) have been synthesized from 2,6-lutidine (351) (336,450). Thus, treatment of the monolithium derivative (153) of 351 with P-bromopropionaldehyde dimethylacetal gave an acetal, which was converted to the keto acetal (412) by treatment with phenyllithium and acetonitrile. Reaction of 412 with ethylene glycol and p-toluenesulfonic acid followed by reduction with sodium-isoamyl alcohol gave the cw-piperidine (413). Hydrolysis of 413 with 5% HCl gave the tricyclic acetal (414) which was transformed to a separable 1 1 mixture of the ketones (415 and 416) by treatment with pyrrolidine-acetic acid. Reaction of ketone 416 with methyllithium followed by dehydration with thionyl chloride afforded the rather unstable olefin (417) which on catalytic hydrogenation over platinum oxide in methanol gave precoccinelline (100). Oxidation of 100 with m-chloroperbenzoic acid yielded coccinelline (99) (Scheme 52) (336,450). [Pg.274]

The ketone group at the 3 position is then protected as its acetal (13-2) by reaction with ethylene glycol, the carbonyl at 11 being totally resistant to those conditions. [Pg.171]

Aldehydes are more reactive than ketones. Therefore, aldehydes react with ethylene glycol to form acetals preferentially over ketones. Thus, aldehydes can be protected selectively. This is a useful way to perform reactions on ketone functionalities in molecules that contain both aldehyde and ketone groups. [Pg.221]

The reaction itself is called the pinacoline transformation. Ethers of the glycols also behave similarly, in some cases with particular ease (B., 39, 2288 A., Ch. (8), 9, 484). For a corresponding reaction among ketones, see p. Ill, See also Ann. Rep., 1930, 114. [Pg.79]

Aldehydes and ketones are usually protected by converting them to acetals by reaction with an alcohol in the presence of acid (see Section 18.9). Although many different alcohols could be used, ethylene glycol (1,2-ethanediol) or 1,3-propanediol is most often... [Pg.1015]


See other pages where Glycols reaction with ketones is mentioned: [Pg.94]    [Pg.606]    [Pg.13]    [Pg.3]    [Pg.1180]    [Pg.83]    [Pg.230]    [Pg.299]    [Pg.1052]    [Pg.40]    [Pg.176]    [Pg.180]    [Pg.333]    [Pg.354]    [Pg.889]    [Pg.467]    [Pg.79]    [Pg.515]    [Pg.115]    [Pg.14]    [Pg.226]    [Pg.515]    [Pg.522]    [Pg.348]    [Pg.455]    [Pg.891]    [Pg.522]   
See also in sourсe #XX -- [ Pg.14 ]




SEARCH



Glycols reactions

Reaction with ketone

© 2024 chempedia.info