Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

GFAAS spectrometry

Four types of atomic spectrometry have been interfaced for chromatographic detection, namely AAS, FES, AFS and APES. Ebdon et al. [178] have discussed coupling of HPLC with AAS. HPLC-FAAS is relatively insensitive. Application of HPLC-GFAAS or... [Pg.455]

Multi-element AAS has been reviewed [112], as well as ETAAS [104] and instrumental aspects of GFAAS [113]. Various monographs on analytical atomic absorption spectrometry are available [52,96,114,115], and on GFAAS [116] and ETAAS [117] more in particular. [Pg.611]

Conventional ICP-AES has similar detection limits to FA AS (although inferior to those of ICP-MS) and is much faster when many elements are determined in the same sample. The detection limits of modem, fast ICP-AES are equal to those of conventional, slow GFAAS. Table 8.31 compares the detection power of various atomic emission spectrometries. The greater... [Pg.621]

ASTM. 1998a. ASTME1613. Standard test method for analysis of digested samples for lead by inductively coupled plasma atomic emission spectrometry (ICP-AES). Flame Atomic Absorption (FAAS), or Graphite Furnace Atomic Absorption (GFAA) Techniques. American Society for Testing and Materials. [Pg.488]

Table 5.6 compares the ICP-AES results with data generated for the same sample by two other independent methods - isotope dilution spark source mass spectrometry (IDSSMS), and graphite furnace atomic absorption spectrometry (GFAAS). The IDSSMS method also uses 25-fold preconcentration of the metals and matrix separation using the ion exchange procedure, following isotope... [Pg.258]

Flame atomic absorption spectrometry (FAAS) can be used to detect most elements present at levels greater than about 100 pg 1 . For more sensitive determinations graphite furnace atomic absorption spectrometry (GFAAS) is the technique of choice. In addition, if the volume of the fraction is limited GFAAS is ideally suited for the determination because only a few microfitres (5-20 pi) of sample... [Pg.163]

GFAAS Graphite Furnace Atomic Absorption Spectrometry... [Pg.169]

B. Hilligsoe and E. H. Hansen, Application of factorial designs and simplex optimisation in the development of flow injection-hydride generation-graphite furnace atomic absorption spectrometry (FI-HG-GFAAS) procedures as demonstrated for the determination of trace levels of germanium, Fresenius J. Anal. Chem., 358(7-8), 1997, 775-780. [Pg.157]

Wet chemical methods involve sophisticated sample preparation and standardization with National Bureau of Standards reference materials but are not difficult for the analytical chemist nor necessarily time consuming (Figure 1). The time from sample preparation to final results for various analytical methods, such as GFAA (graphite furnace atomic absorption), ICP (inductively coupled plasma spectroscopy), ICP-MS (ICP-mass spectrometry), and colorimetry, ranges from 0.5 to 5.0 h, depending on the technique used. Colorimetry is the method of choice because of its extreme accuracy. Typical results of the colorimetric analysis of doped oxides are shown in Tables I and II, which show the accuracy and precision of the measurements. [Pg.515]

GFAAS = graphite furnace (flameless) atomic absorption spectroscopy MCAAS = micro-cup atomic spectroscopy DCOP-AES = direct current plasma-atomic emission spectroscopy HFP-AES = high frequency piasma-torch-atomic emission spectroscopy NAA - neutron activation analyst-, atomic absorption spectroscopy AAS - atomic absorption spectrophotometer XES = X-ray energy spectrometry and SEM - scanning electron microscopy. [Pg.117]

GFAAS = graphite furnace (flameless) atomic absorption spectroscopy TLC = thin layer chromatography HFP-AES = high frequency plasma-atomic emission spectroscopy NAA = neutron atomic analysis ICP-AES = inductively coupled plasma-atomic emission spectroscopy AAS = atomic absorption spectrometry GSE = graphite spectroscopic electrode UV = ultraviolet spectrophotometry PD = photodensitometer and (3,5-diBr-PADAP) = 2(-3,-5-dibromo-2-pyridylazo)-5- diethyl-ami nophenol. [Pg.124]

In the test method, the coal or coke to be analyzed is ashed under controlled conditions, digested by a mixture of aqua regia and hydrofluoric acid, and finally dissolved in 1% nitric acid. The concentration of individual trace elements is determined by either inductively coupled plasma-atomic emission spectrometry (ICPAES) or inductively coupled plasma-mass spectrometry (ICPMS). Selected elements that occur at concentrations below the detection limits of ICPAES can be analyzed quantitatively by graphite furnace atomic absorption spectrometry (GFAA). [Pg.105]

AMS = accelerated mass spectroscopy EDTA = ethylene diamine tetra acetic acid GFAAS = graphite furnace atomic absorption spectrometry ICP-AES = inductively coupled plasma - atomic emission spectroscopy NAA = neutron activation analysis ETAAS = electrothermal atomic absorption spectrometry SEC/ICP-MS = size-exclusion chromatography/ICP-AES/mass spectrometry HLPC/ICP-AES = high-performance liquid chromatography/ICP-AES LAMMA = laser ablation microprobe mass analysis NA = not applicable ppq = parts per quadrillion... [Pg.261]

Jiang, H., Y. Qin, and B. Hu. 2008. Dispersive liquid phase microextraction (DLPME) combined with graphite furnace atomic absorption spectrometry (GFAAS) for determination of trace Co and Ni in environmental water and rice samples. Talanta 74 1160-1165. [Pg.91]

Metals contained in samples are determined by a wide variety of analytical methods. Bulk metals, such as copper in brass or iron in steel, can be analyzed readily by chemical methods such as gravimetry or electrochemistry. However, many metal determinations are for smaller, or trace, quantities. These are determined by various spectroscopic or chromatographic methods, such as atomic absorbance spectrometry using flame (FAAS) or graphite furnace (GFAAS) atomization, atomic emission spectrometry (AES), inductively coupled plasma atomic emission spectrometry (ICP-AES), inductively coupled plasma mass spectrometry (ICP-MS), x-ray fluorescence (XRF), and ion chromatography (IC). [Pg.227]

Graphite Furnace Atomic Absorption Spectrometry (GFAAS) or Atomic Absorption with Electrothermal Atomisation (ETAAS)... [Pg.252]

Graphite Furnace Atomic Absorption Spectrometry Graphite furnace atomic absorption spectrometry (GFAAS), the most popular form of ET-AAS, is today a common technique widely used in routine laboratories and has become a powerful tool for the analysis of trace and ultratrace elements in clinical and biological samples [61]. The main advantages of this technique are low cost, simplicity, excellent detection power, and the fact that it allows very low sample volumes to be used (5-20 p,L). In this sense, this technique allows LoDs for many elements in the order of 0.01 pgl-1 in solution or 1 pg g-1 in solid samples to be achieved [62]. However, the technique is prone to spectral and matrix interferences. [Pg.419]


See other pages where GFAAS spectrometry is mentioned: [Pg.625]    [Pg.634]    [Pg.489]    [Pg.611]    [Pg.614]    [Pg.648]    [Pg.443]    [Pg.448]    [Pg.455]    [Pg.259]    [Pg.259]    [Pg.340]    [Pg.344]    [Pg.140]    [Pg.126]    [Pg.466]    [Pg.258]    [Pg.263]    [Pg.2]    [Pg.348]    [Pg.224]    [Pg.252]    [Pg.373]    [Pg.374]    [Pg.379]    [Pg.41]    [Pg.352]    [Pg.95]   


SEARCH



GFAAS

Graphite furnace atomic absorption spectrometry (GFAAS

© 2024 chempedia.info