Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Gas reaction temperature

The product gas is cleaned of char particles using a cyclone. The liquid products and water are retained in a system of two condensers and a cotton filter. The gas flow rate is then measured using a dry testmeter, and the CO and CO concentrations are continuously determined by an infrared analyzer. In addition, gas samples are taken at regular time intervals and analyzed by chromatography to determine the percentages of Hj. CO, CO2, CH4 and Cj (CjHi, CjH, CjHj) in the product gas. Reaction temperature. [Pg.347]

METALS Final film Starting material MP/BP (C°) Solvent Carrier gas Reaction temperature (C°)... [Pg.138]

A mathematical model for thermophoretic deposition [24], experimentally verified, concluded that deposition efficiency (ratio of Si02 equivalent entering tube to that contained in the exhaust) may be expressed as e=0.8(1-Te/Trxn) where T is the gas reaction temperature and Te is the temperature downstream of the torch at which the gas and the tube wall equilibrate and deposition ceases. Typically, Te is about 400°C and T,xr about 2000°C, giving an efficiency on the order of 60%. [Pg.189]

Catalytic cracking is a key refining process along with catalytic reforming and alkylation for the production of gasoline. Operating at low pressure and in the gas phase, it uses the catalyst as a solid heat transfer medium. The reaction temperature is 500-540°C and residence time is on the order of one second. [Pg.384]

Process 2, the adsorption of the reactant(s), is often quite rapid for nonporous adsorbents, but not necessarily so it appears to be the rate-limiting step for the water-gas reaction, CO + HjO = CO2 + H2, on Cu(lll) [200]. On the other hand, process 4, the desorption of products, must always be activated at least by Q, the heat of adsorption, and is much more apt to be slow. In fact, because of this expectation, certain seemingly paradoxical situations have arisen. For example, the catalyzed exchange between hydrogen and deuterium on metal surfaces may be quite rapid at temperatures well below room temperature and under circumstances such that the rate of desorption of the product HD appeared to be so slow that the observed reaction should not have been able to occur To be more specific, the originally proposed mechanism, due to Bonhoeffer and Farkas [201], was that of Eq. XVIII-32. That is. [Pg.720]

The reaction of adipic acid with ammonia in either Hquid or vapor phase produces adipamide as an intermediate which is subsequentiy dehydrated to adiponitrile. The most widely used catalysts are based on phosphoms-containing compounds, but boron compounds and siHca gel also have been patented for this use (52—56). Vapor-phase processes involve the use of fixed catalyst beds whereas, in Hquid—gas processes, the catalyst is added to the feed. The reaction temperature of the Hquid-phase processes is ca 300°C and most vapor-phase processes mn at 350—400°C. Both operate at atmospheric pressure. Yields of adipic acid to adiponitrile are as high as 95% (57). [Pg.220]

Low pressure methanol carbonylation transformed the market because of lower cost raw materials, gender, lower cost operating conditions, and higher yields. Reaction temperatures are 150—200°C and the reaction is conducted at 3.3—6.6 MPa (33—65 atm). The chief efficiency loss is conversion of carbon monoxide to CO2 and H2 through a water-gas shift as shown. [Pg.67]

The gasification is performed usiag oxygen and steam (qv), usually at elevated pressures. The steam—oxygen ratio along with reaction temperature and pressure determine the equiUbrium gas composition. The reaction rates for these reactions are relatively slow and heats of formation are negative. Catalysts maybe necessary for complete reaction (2,3,24,42,43). [Pg.65]

Hydrocarbon, typically natural gas, is fed into the reactor to intersect with an electric arc stmck between a graphite cathode and a metal (copper) anode. The arc temperatures are in the vicinity of 20,000 K inducing a net reaction temperature of about 1500°C. Residence time is a few milliseconds before the reaction temperature is drastically reduced by quenching with water. Just under 11 kWh of energy is required per kg of acetylene produced. Low reactor pressure favors acetylene yield and the geometry of the anode tube affects the stabiUty of the arc. The maximum theoretical concentration of acetylene in the cracked gas is 25% (75% hydrogen). The optimum obtained under laboratory conditions was 18.5 vol % with an energy expenditure of 13.5 kWh/kg (4). [Pg.384]

The unit Kureha operated at Nakoso to process 120,000 metric tons per year of naphtha produces a mix of acetylene and ethylene at a 1 1 ratio. Kureha s development work was directed toward producing ethylene from cmde oil. Their work showed that at extreme operating conditions, 2000°C and short residence time, appreciable acetylene production was possible. In the process, cmde oil or naphtha is sprayed with superheated steam into the specially designed reactor. The steam is superheated to 2000°C in refractory lined, pebble bed regenerative-type heaters. A pair of the heaters are used with countercurrent flows of combustion gas and steam to alternately heat the refractory and produce the superheated steam. In addition to the acetylene and ethylene products, the process produces a variety of by-products including pitch, tars, and oils rich in naphthalene. One of the important attributes of this type of reactor is its abiUty to produce variable quantities of ethylene as a coproduct by dropping the reaction temperature (20—22). [Pg.390]

If the gas has the correct composition, the carbon content at the surface increases to the saturation value, ie, the solubiUty limit of carbon in austenite (Fig. 2), which is a function of temperature. Continued addition of carbon to the surface increases the carbon content curve. The surface content is maintained at this saturation value (9) (Fig. 5). The gas carburizing process is controlled by three factors (/) the thermodynamics of the gas reactions which determine the equiUbrium carbon content at the surface (2) the kinetics of the chemical reactions which deposit the carbon and (J) the diffusion of carbon into the austenite. [Pg.213]

As for the selectivity of DBO, the higher the reaction pressure and the lower the reaction temperature, the higher the selectivity. As for the reaction rate, the higher the reaction temperature, the larger the rate. Therefore, the industrial operation of the process is conducted at 10—11 MPa (1450—1595 psi) and 90—100°C. In addition, gas circulation is carried out in order to keep the oxygen concentration below the explosion limit during the reaction, and to improve the CO utili2ation rate and the gas—Hquid contact rate. [Pg.459]

Operational Characteristics. Oxygen generation from chlorate candles is exothermic and management of the heat released is a function of design of the total unit iato which the candle is iacorporated. Because of the low heat content of the evolved gas, the gas exit temperature usually is less than ca 93°C. Some of the heat is taken up within the candle mass by specific heat or heat of fusion of the sodium chloride. The reacted candle mass continues to evolve heat after reaction ends. The heat release duting reaction is primarily a function of the fuel type and content, but averages 3.7 MJ/m (100 Btu/fT) of evolved oxygen at STP for 4—8 wt % iron compositions. [Pg.486]

At the lowest reaction temperatures, tetrahedra rather than P2 dimers may be produced, or as the gas cools, dimers combine as ... [Pg.348]

In fluid catalytic cracking, a partially vaporized gas oil is contacted with zeoflte catalyst (see Fluidization). Contact time varies from 5 s—2 min pressure usually is in the range of 250—400 kPa (2.5—4 atm), depending on the design of the unit reaction temperatures are 720—850 K (see BuTYLENEs). [Pg.126]

Approximately 45% of the world s phthaUc anhydride production is by partial oxidation of 0-xylene or naphthalene ia tubular fixed-bed reactors. Approximately 15,000 tubes of 25-mm dia would be used ia a 31,000 t/yr reactor. Nitrate salts at 375—410°C are circulated from steam generators to maintain reaction temperatures. The resultant steam can be used for gas compression and distillation as one step ia reduciag process energy requirements (100). [Pg.525]

Trichlorosilane. The primary production process for trichlorosilane is the direct reaction of hydrogen chloride gas and sihcon metal in a fluid-bed reactor. Although this process produces both trichlorosilane and sihcon tetrachloride, production of the latter can be minimi2ed by proper control of the reaction temperature (22). A significant amount of trichlorosilane is also produced by thermal rearrangement of sihcon tetrachloride in the presence of hydrogen gas and sihcon. [Pg.19]


See other pages where Gas reaction temperature is mentioned: [Pg.277]    [Pg.162]    [Pg.119]    [Pg.276]    [Pg.277]    [Pg.162]    [Pg.119]    [Pg.276]    [Pg.62]    [Pg.327]    [Pg.759]    [Pg.838]    [Pg.77]    [Pg.4]    [Pg.124]    [Pg.26]    [Pg.74]    [Pg.85]    [Pg.97]    [Pg.390]    [Pg.414]    [Pg.426]    [Pg.457]    [Pg.481]    [Pg.42]    [Pg.147]    [Pg.261]    [Pg.508]    [Pg.508]    [Pg.526]    [Pg.155]    [Pg.482]    [Pg.483]    [Pg.87]    [Pg.88]    [Pg.187]    [Pg.228]    [Pg.430]   
See also in sourсe #XX -- [ Pg.327 ]




SEARCH



Gas temperatures

High and Low Temperature Water-Gas Shift Reactions

© 2024 chempedia.info