Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

G activation site

Each SWISS-PROT entry consists of general information about the entry (e.g., entry name and date, accession number), Name and origin of the protein (e.g., protein name, EC number and biological origin), References, Comments (e.g., catalytic activity, cofactor, subuit structure, subcellular location and family class, etc.), Cross-reference (EMBL, PIR, PDB, Pfam, ProSite, ProDom, ProtoMap, etc.), Keywords, Features (e.g., active site, binding site, modification, secondary structures, etc.), and Sequence information (amino acid sequence in Swiss-Prot format, Chapter 4). [Pg.214]

To study electronic behavior in biomolecules, QM and MM are combined into one calculation (QM/MM) (Gogonea et al., 2001 Warshel, 1991) that models a large molecule (e.g., enzyme) using MM and one crucial section of the molecule (e.g., active site) with QM. This is designed to give results that have good speed where only the region needs to be modeled quantum mechanically. [Pg.290]

A ,composite A B3LYp/6.31+G (active site) + AAGsoivation (protein-penicillin)... [Pg.143]

Stepwise Polymerizations For stepwise polymerizations of stoichiometric formulations of comonomers with / and g active sites per molecule exhibiting an ideal behavior (equal reactivity of functional groups, absence of both substimtion effects and intramolecular cycles), the gel conversion (Xg i) is given by ... [Pg.522]

Sulfur is well known to poison catalysts, e.g. active sites are blocked by sulfur atoms. A key step to regain catalytic activity is the removal of sulfur by oxidative treatment. [Pg.526]

Catalysis in a single fluid phase (liquid, gas or supercritical fluid) is called homogeneous catalysis because the phase in which it occurs is relatively unifonn or homogeneous. The catalyst may be molecular or ionic. Catalysis at an interface (usually a solid surface) is called heterogeneous catalysis, an implication of this tenn is that more than one phase is present in the reactor, and the reactants are usually concentrated in a fluid phase in contact with the catalyst, e.g., a gas in contact with a solid. Most catalysts used in the largest teclmological processes are solids. The tenn catalytic site (or active site) describes the groups on the surface to which reactants bond for catalysis to occur the identities of the catalytic sites are often unknown because most solid surfaces are nonunifonn in stmcture and composition and difficult to characterize well, and the active sites often constitute a small minority of the surface sites. [Pg.2697]

Zambelli T, Wintterlin J and ErtI G 1996 Identification of the active sites of a surface-catalyzed reaction Soienoe 273 1688-90... [Pg.2713]

Jedrzejas, M. J., Singh, S. Brouillette, W. J. Air, G. M. Luo, M. A. 1995. Strategy for theoretical binding constant, Ki calculation for neuraminidase aromatic inhibitors, designed on the basis of the active site structure of influenza virus neuraminidase. Proteins Struct. Funct. Genet. 23 (1995) 264-277... [Pg.147]

For many applications, especially studies on enzyme reaction mechanisms, we do not need to treat the entire system quantum mechanically. It is often sufficient to treat the center of interest (e.g., the active site and the reacting molecules) quantum mechanically. The rest of the molecule can be treated using classical molecular mechanics (MM see Section 7.2). The quantum mechanical technique can be ab-initio, DFT or semi-empirical. Many such techniques have been proposed and have been reviewed and classified by Thiel and co-workers [50] Two effects of the MM environment must be incorporated into the quantum mechanical system. [Pg.395]

Noble M E M, R K Wierenga, A-M Lambeir, F R Opperdoes, W H Thunnissen, K H Kalk, H Groendijk and W G J Hoi 1991. The Adaptability of the Active Site of Trypanosomal Triosephosphate Isomerase as Observed in the Crystal Structures of Three Different Complexes. Proteins Structure, Function and Genetics 10 50-69. [Pg.576]

The most widely used particulate support is diatomaceous earth, which is composed of the silica skeletons of diatoms. These particles are quite porous, with surface areas of 0.5-7.5 m /g, which provides ample contact between the mobile phase and stationary phase. When hydrolyzed, the surface of a diatomaceous earth contains silanol groups (-SiOH), providing active sites that absorb solute molecules in gas-solid chromatography. [Pg.564]

A compound which is a good choice for an artificial electron relay is one which can reach the reduced FADH2 active site, undergo fast electron transfer, and then transport the electrons to the electrodes as rapidly as possible. Electron-transport rate studies have been done for an enzyme electrode for glucose (G) using interdigitated array electrodes (41). The following mechanism for redox reactions in osmium polymer—GOD biosensor films has... [Pg.45]

Fig. 1. Inhibition of porcine pancreatic a-amylase. Substrates, an inhibitor, and their binding orientations in the active site are shown schematically. The arrows denote the catalytic site in each case, (a) The small substrate, G2PNP [17400-77-0] (3) (b) the large substrate, G OH [13532-61 -1] (4) and (c) the inhibitor, 4-phenyl imidazole (5) and the substrate G2PNP (3) in the binding orientation for noncompetitive inhibition. The binding orientation of G2PNP... Fig. 1. Inhibition of porcine pancreatic a-amylase. Substrates, an inhibitor, and their binding orientations in the active site are shown schematically. The arrows denote the catalytic site in each case, (a) The small substrate, G2PNP [17400-77-0] (3) (b) the large substrate, G OH [13532-61 -1] (4) and (c) the inhibitor, 4-phenyl imidazole (5) and the substrate G2PNP (3) in the binding orientation for noncompetitive inhibition. The binding orientation of G2PNP...
A second example of up-and-down p sheets is the protein neuraminidase from influenza virus. Here the packing of the sheets is different from that in RBP. They do not form a simple barrel but instead six small sheets, each with four P strands, which are arranged like the blades of a six-bladed propeller. Loop regions between the p strands form the active site in the middle of one side of the propeller. Other similar structures are known with different numbers of the same motif arranged like propellers with different numbers of blades such as the G-proteins discussed in Chapter 13. [Pg.70]

Figure 11.9 A diagram of the active site of chymotrypsin with a bound inhibitor, Ac-Pro-Ala-Pro-Tyr-COOH. The diagram illustrates how this inhibitor binds in relation to the catalytic triad, the strbstrate specificity pocket, the oxyanion hole and the nonspecific substrate binding region. The Inhibitor is ted. Hydrogen bonds between Inhibitor and enzyme are striped. (Adapted from M.N.G. James et al., /. Mol. Biol. 144 43-88, 1980.)... Figure 11.9 A diagram of the active site of chymotrypsin with a bound inhibitor, Ac-Pro-Ala-Pro-Tyr-COOH. The diagram illustrates how this inhibitor binds in relation to the catalytic triad, the strbstrate specificity pocket, the oxyanion hole and the nonspecific substrate binding region. The Inhibitor is ted. Hydrogen bonds between Inhibitor and enzyme are striped. (Adapted from M.N.G. James et al., /. Mol. Biol. 144 43-88, 1980.)...
The final step of the whole reaction process is the desorption of the products. This step is essential not only for the practical purpose of collecting and storing the desired output, but also for the regeneration of the catalytic active sites of the surface. Most reactions have at least one rate-hmiting step, which frequently makes the reaction prohibitively slow for practical purposes when, e.g., it is intended for homogeneous (gas or fluid) media. The role of a good solid-state catalyst is to obtain an acceptable... [Pg.389]

Partial replacement of ethanol by methanol has nearly no effect. In the case of propanol an increase in grafting is visible. This can be attributed to the mixing of higher carbon alcohols, e.g., butanol and isobutanol, with the active solvent methanol, which increases the miscibility of the monomer in these grafting systems and, consequently, increases the penetration of monomer to the active sites on the cellulose chains. [Pg.538]

The support materials for the stationary phase can be relatively inactive supports, e.g. glass beads, or adsorbents similar to those used in LSC. It is important, however, that the support surface should not interact with the solute, as this can result in a mixed mechanism (partition and adsorption) rather than true partition. This complicates the chromatographic process and may give non-reproducible separations. For this reason, high loadings of liquid phase are required to cover the active sites when using high surface area porous adsorbents. [Pg.218]

Figure 6.14 Enzymatic side chain cleavage of penicillins. 6-Aminopenicillanic acid, a valuable intermediate for the production of various semi-synthetic penicillins, can be obtained through enzyme-mediated hydrolysis of the phenylacety group of penicillin G or the phenoxyacetyl group of penicillin V. The active site of the enzyme recognises the aromatic side chain and the amide linkage, rather than the penidllin nucleus. Chemical entitles other than penicillins are therefore often good substrates, as long as they contain the aromatic acetamide moiety. Figure 6.14 Enzymatic side chain cleavage of penicillins. 6-Aminopenicillanic acid, a valuable intermediate for the production of various semi-synthetic penicillins, can be obtained through enzyme-mediated hydrolysis of the phenylacety group of penicillin G or the phenoxyacetyl group of penicillin V. The active site of the enzyme recognises the aromatic side chain and the amide linkage, rather than the penidllin nucleus. Chemical entitles other than penicillins are therefore often good substrates, as long as they contain the aromatic acetamide moiety.

See other pages where G activation site is mentioned: [Pg.194]    [Pg.47]    [Pg.68]    [Pg.198]    [Pg.38]    [Pg.253]    [Pg.138]    [Pg.132]    [Pg.383]    [Pg.194]    [Pg.47]    [Pg.68]    [Pg.198]    [Pg.38]    [Pg.253]    [Pg.138]    [Pg.132]    [Pg.383]    [Pg.125]    [Pg.432]    [Pg.2697]    [Pg.2706]    [Pg.2826]    [Pg.10]    [Pg.18]    [Pg.486]    [Pg.319]    [Pg.365]    [Pg.419]    [Pg.40]    [Pg.260]    [Pg.261]    [Pg.267]    [Pg.279]    [Pg.374]    [Pg.12]    [Pg.479]    [Pg.261]    [Pg.530]    [Pg.807]   
See also in sourсe #XX -- [ Pg.208 ]




SEARCH



© 2024 chempedia.info