Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fusion linear systems, application

At the present time, the long linear open field line systems discussed above do not appear to be particularly attractive for pure fusion systems, due primarily to high axial particle and/or energy loss rates as well as other difficulties relating to both physics and technology issues. As fission-fusion hybrid systems the outlook is not so pessimistic and, indeed, linear systems possess virtues that may make them quite attractive for such an application. [Pg.229]

Magnus was the first to develop extensive synthetic applications of the Pauson-Khand preparation of the bicyclo[3.3.0]oct-l-en-3-one system. His efforts amply demonstrate the degree to which the high level of functionality in the Pauson-Khand products can be directly utilized in building more complex structures. A formal synthesis of the antitumor sesquiterpene coriolin illustrates a very efficient sequence for construction of the third ring in the linearly fused triquinane series in the presence of considerable functionality (Schemes 10 and 18). A synthesis of the related triquinane hirsutic acid utilizes the observation that the proper stereochemical relationship between the substituents at C-7 and the ring-fusion carbon (C-5) of the bicyclo[3.3.0]oct-l-en-3-one system, while not controllable in the cycloaddition reaction itself, may be readily established by acid- or base-catalyzed equilibration (equation 54 and Scheme 19). ... [Pg.1060]

A primary objective of this work is to provide the general theoretical foundation for different perturbation theory applications in all types of nuclear systems. Consequently, general notations have been used without reference to any specific mathematical description of the transport equation used for numerical calculations. The formulation has been restricted to time-independent and linear problems. Throughout the work we describe the scope of past, and discuss the possibility for future applications of perturbation theory techniques for the analysis, design and optimization of fission reactors, fusion reactors, radiation shields, and other deep-penetration problems. This review concentrates on developments subsequent to Lewins review (7) published in 1968. The literature search covers the period ending Fall 1974. [Pg.184]

Boranes, boron clusters, and in particular, carboranes are of special interest due to their unique properties that cannot be found in organic counterparts. These uniqne properties are based either on the element boron, due to its electron deficiency, or on the structnral featnre of the cluster compound. Borane clusters as a class of materials have a wide range of potential applications. This is not only due to their unique electronic and nuclear features the fields of application, to name but a few, range from materials science through medical applications to catalysis, which will be described in more detail below [13]. Carboranes can be applied as liquid crystals in electro-optical displays [14], non-linear optics [15], and ion-selective electrodes [16] in the materials science arena. If carboranes are vaporized and fired at high temperatures they create boron films that are applied in Tokamak reactors for nuclear fusion [17]. Boranes have furthermore found application in airbag propellant systems in cars [18], as the stationary phase in gas chromatography [19] and in metal ion extraction systems, for example, for nuclear waste [20]. In medical applications, boron neutron capture therapy (BNCT), a special field of anti-cancer therapy, is noteworthy. [Pg.531]


See other pages where Fusion linear systems, application is mentioned: [Pg.224]    [Pg.228]    [Pg.383]    [Pg.5]    [Pg.205]    [Pg.238]    [Pg.715]    [Pg.570]    [Pg.122]    [Pg.178]   
See also in sourсe #XX -- [ Pg.213 ]




SEARCH



Applications system

Fusion Linear systems

Fusion systems

Linear applications

Linear systems

Linearized system

© 2024 chempedia.info