Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Functional imaging function

Odor is of prime importance because a petroleum solvent is often used in closed rooms moreover, the idea of odor is tied instinctively in the public image to toxicity. Odor is a function of the solvent s composition and volatility. Generally, the paraffin hydrocarbons are less odorous while the aromatics are more so. [Pg.274]

In the Maximum Entropy Method (MEM) which proceeds the maximization of the conditional probability P(fl p ) (6) yielding the most probable solution, the probability P(p) introducing the a priory knowledge is issued from so called ergodic situations in many applications for image restoration [1]. That means, that the a priori probabilities of all microscopic configurations p are all the same. It yields to the well known form of the functional 5(/2 ) [9] ... [Pg.115]

We will see that superseding the functional fi(p ) in the form of Gibbs measure (4) ensures the linearity of equation (1), simplifies the iteration procedure, and naturally provides the support of any expected feature in the image. The price for this is, that the a priori information is introduced in more biased, but quite natural form. [Pg.115]

The importance of distinct a priori knowledge account becomes more perceptible if noisy data are under restoration. The noise / ( shifts the solution of (1) from the Maximum Likelihood (ML) to the so called Default Model for which the function of the image constraint becomes more significant. [Pg.117]

To implement the reconstruction of the initial image, using denoised and/or noisy data given by simulated projections The algorithm (1) and the Gibbs functional in the form (12) were used for the reconstruction. The coefficients a and P were optimized every time. [Pg.117]

The Index n = k- ) - M + m is the current variable that indicates the sequence for the beam projections. Exploiting the current measurings y fn) one has to estimate the unknown image parameters a, with undefined conditions about their distribution and the noise FDD function. [Pg.121]

In this figure the next definitions are used A - projection operator, B - pseudo-inverse operator for the image parameters a,( ), C - empirical posterior restoration of the FDD function w(a, ), E - optimal estimator. The projection operator A is non-observable due to the Kalman criteria [10] which is the main singularity for this problem. This leads to use the two step estimation procedure. First, the pseudo-inverse operator B has to be found among the regularization techniques in the class of linear filters. In the second step the optimal estimation d (n) for the pseudo-inverse image parameters d,(n) has to be done in the presence of transformed noise j(n). [Pg.122]

The adaptive estimation of the pseudo-inverse parameters a n) consists of the blocks C and E (Fig. 1) if the transformed noise ( ) has unknown properties. Bloek C performes the restoration of the posterior PDD function w a,n) from the data a (n) + (n). It includes methods and algorithms for the PDD function restoration from empirical data [8] which are based on empirical averaging. Beeause the noise is assumed to be a stationary process with zero mean value and the image parameters are constant, the PDD function w(a,n) converges, at least, to the real distribution. The posterior PDD funetion is used to built a back loop to block B and as a direct input for the estimator E. For the given estimation criteria f(a,d) an optimal estimation a (n) can be found from the expression... [Pg.123]

Some discontinuities may be identified by a conventional two-dimensional ultrasonic technique, from which the well-known C-scan image is the most popular. The C-scan technique is relatively easy to implement and the results from several NDE studies have been very encouraging [1]. In the case of cylindrical specimens, a circular C-scan image is convenient to show discontinuity information. The circular C-scan image shows the peak amplitude of a back-scattered pulse received in the circular array. The axial scan direction is shown as a function of transducer position in the circular array. The circular C-scan image serves also as an initial step for choosing circular B-scan profiles. The latter provides a mapping between distance to the discontinuity and transducer position in the circular array. [Pg.201]

The detectability of critical defects with CT depends on the final image quality and the skill of the operator, see figure 2. The basic concepts of image quality are resolution, contrast, and noise. Image quality are generally described by the signal-to-noise ratio SNR), the modulation transfer function (MTF) and the noise power spectrum (NFS). SNR is the quotient of a signal and its variance, MTF describes the contrast as a function of spatial frequency and NFS in turn describes the noise power at various spatial frequencies [1, 3]. [Pg.209]

To verify the modelling of the data eolleetion process, calculations of SAT 4, in the entrance window of the XRII was compared to measurements of RNR p oj in stored data as function of tube potential. The images object was a steel cylinder 5-mm) with a glass rod 1-mm) as defect. X-ray spectra were filtered with 0.6-mm copper. Tube current and exposure time were varied so that the signal beside the object. So, was kept constant for all tube potentials. Figure 8 shows measured and simulated SNR oproj, where both point out 100 kV as the tube potential that gives a maximum. Due to overestimation of the noise in calculations the maximum in the simulated values are normalised to the maximum in the measured values. Once the model was verified it was used to calculate optimal choice of filter materials and tube potentials, see figure 9. [Pg.212]

A TOFD or B-Scan image is a discrete image defined as a function/of two variables on a finite and discrete domain D of dimensions MxN. [Pg.232]

Finally, each coefficient were standardized by the division of the sum of all coefficients(2). This definition allows also to regard as the co-occurrence matrix as a function of probability distribution, it can be represented by an image of KxK dimensions. [Pg.232]

For restoring of three-dimensional SD is used stated above approach. Under restoring of tomographic images for the base undertakes a function of three-dimensional total image, which after double differentiation and inverse projecting describes sought SD 8 (1) ... [Pg.251]

Let the problem of focusing laser radiation into the smooth curve L have a smooth solution function (p, rf)e.C (G). Then the inverse image of each point M ff) EiL is a certain segment F (ff) S G. ... [Pg.267]

The a priori information involved by this modified Beta law (5) does not consider the local correlation between pixels, however, the image f is mainly constituted from locally constant patches. Therefore, this a priori knowledge can be introduced by means of a piecewise continuous function, the weak membrane [2]. The energy related to this a priori model is ... [Pg.331]

The sensitivity curves are plots of maximum achieved sensitivity as a function of thickness of the object for a given focal spot size and source to detector distance. The best attainable sensitivity in image intensifier systems is a function of tube voltage, current, scattered radiation and the screen gamma. As a first step, stainless steel plates with thicknesses ranging from 5 mm-30 mm in steps of 5 mm were chosen. These plates had a length of 950 mm and width of 280 mm. The plate is positioned very close and at the center to the LI. tube. The extraneous... [Pg.444]

The analyze mode display is similar to the scan mode display used online. Analyze mode includes functions for evaluation of data, e. g. markers, measure functions, zoom function and selection of cross-section views. In addition, A-scan data can be reconstructed into images and displayed. [Pg.789]

The software US-SCAN 3.0 (IBT GmbH, Ober-Ramstadt, Germany) provides all functions of a portable flaw detector and a powerful ultrasonic imaging in A-, B-, C- and D-scans. Not only motor driven scanners can he used, but also manual scanning systems with encoders. Further documentation and test reports can be carried out with Windows software. [Pg.859]

B1.17.5.1 IMAGING OF PROJECTED STRUCTURE—THE CONTRAST TRANSFER FUNCTION (CTF) OF TEM... [Pg.1635]


See other pages where Functional imaging function is mentioned: [Pg.115]    [Pg.123]    [Pg.124]    [Pg.125]    [Pg.127]    [Pg.172]    [Pg.184]    [Pg.208]    [Pg.209]    [Pg.210]    [Pg.212]    [Pg.214]    [Pg.233]    [Pg.249]    [Pg.251]    [Pg.251]    [Pg.326]    [Pg.444]    [Pg.444]    [Pg.444]    [Pg.445]    [Pg.445]    [Pg.450]    [Pg.450]    [Pg.469]    [Pg.472]    [Pg.489]    [Pg.502]    [Pg.748]    [Pg.638]    [Pg.1629]   
See also in sourсe #XX -- [ Pg.405 , Pg.406 , Pg.407 , Pg.408 ]




SEARCH



Functional Imaging

Image function

© 2024 chempedia.info