Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Image inverse

In this figure the next definitions are used A - projection operator, B - pseudo-inverse operator for the image parameters a,( ), C - empirical posterior restoration of the FDD function w(a, ), E - optimal estimator. The projection operator A is non-observable due to the Kalman criteria [10] which is the main singularity for this problem. This leads to use the two step estimation procedure. First, the pseudo-inverse operator B has to be found among the regularization techniques in the class of linear filters. In the second step the optimal estimation d (n) for the pseudo-inverse image parameters d,(n) has to be done in the presence of transformed noise j(n). [Pg.122]

Let the problem of focusing laser radiation into the smooth curve L have a smooth solution function (p, rf)e.C (G). Then the inverse image of each point M ff) EiL is a certain segment F (ff) S G. ... [Pg.267]

Calculate the A-block probabilities for the next time step by summing the inverse image block probabilities of the current time step found in step 2. [Pg.252]

As a simple example, consider the A -order LST equations for range k = 2, r = 1 CA. Since the inverse image of an A-block is a block of size N + 2), we need to apply the operator 7TAf >Af+i to twice in succession to define the N + 2)-block probabilities ... [Pg.253]

Consider two topological spaces, (AT, T ) and (X2, T2), and a function cp from AT to X2. This function cpis continuous if and only if the inverse image of every T2-open set of AT is Ti-open in Xv. [Pg.61]

Consider a smooth map/ S3 —> S2. We have called the fiber of a point p C S1 to the inverse image f l p), which is generally a closed curve in S3. Now we define the multiplicity of the fiber / 1(p) to the number of connected components of / (//. Consider the map f1 S3 — S2, where n is an integer, for/" to be a good smooth map. The linking number of the closed curves that form the fibers of /" is equal to the linking number of the closed curves that form the fibers off (they are the same curves). However, the multiplicity of the fibers of/" is equal to n times the multiplicity of the fibers of/. Consequently, the Hopf index has the following property ... [Pg.227]

Students will explore various pen-and-ink techniques in creating an inverse image of a photogram. [Pg.320]

Domains of course have no nontrivial nilpotents, so a nilpotent element/ in R is in all prime ideals. Conversely, if/ is not nilpotent, take a maximal ideal J in Af its inverse image in R is prime and does.not containf Thus the set N of nilpotent elements in R is an ideal equal to the intersection of all prime ideals. One calls N the nilradical, and says R is reduced if N = 0. [Pg.163]

A function between topological spaces is continuous if inverse images of closed sets are closed A homeomorphism is a continuous bijection with continuous inverse. [Pg.167]

Informally, a function f X —> Y is continuous if, for any point pair x, x that are near to each other in X, their images y=f(x) and y =f(x ) are also "near enough" to each other in Y. A precise definition of continuity can be given as follows a function f X —> Y is continuous if and only if the inverse image of every open subset B of Y is an open subset A of X. [Pg.55]

Formula (5.88) plays an im])ortant role in fast inverse imaging. It laovides an a]>-[)ro-ximate soluticm of the inverse problem,... [Pg.147]

Figure 7-7 illustrates the focusing inversion result obtained by the re-weighted regularized conjugate gradient method. The plots of the misfit and parametric functionals are shown in the top panel of Figure 7-7. In this case the data fitting after 50 iterations is within 4% nevertheless the inverse image adec uately reconstructs the true model. We can clearly recognize two bodies in this image, and the densities correspond well to the true model. Figure 7-7 illustrates the focusing inversion result obtained by the re-weighted regularized conjugate gradient method. The plots of the misfit and parametric functionals are shown in the top panel of Figure 7-7. In this case the data fitting after 50 iterations is within 4% nevertheless the inverse image adec uately reconstructs the true model. We can clearly recognize two bodies in this image, and the densities correspond well to the true model.
Portniaguine O., and M. S. Zhdanov, 1999a, Focusing geophysical inversion images Geophysics, 64, No. 3, 874-887. [Pg.329]


See other pages where Image inverse is mentioned: [Pg.249]    [Pg.59]    [Pg.8]    [Pg.67]    [Pg.91]    [Pg.93]    [Pg.99]    [Pg.483]    [Pg.8]    [Pg.67]    [Pg.222]    [Pg.321]    [Pg.45]    [Pg.39]    [Pg.55]    [Pg.113]    [Pg.116]    [Pg.133]    [Pg.134]    [Pg.134]    [Pg.157]    [Pg.60]    [Pg.69]    [Pg.69]    [Pg.107]    [Pg.114]    [Pg.143]    [Pg.153]    [Pg.164]    [Pg.54]    [Pg.55]    [Pg.56]    [Pg.198]    [Pg.308]   
See also in sourсe #XX -- [ Pg.54 ]

See also in sourсe #XX -- [ Pg.15 ]




SEARCH



© 2024 chempedia.info