Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Functional calcium carbonate

Though functionally and chemically similar, fillers and pigments ate distinguished from one another in that fillers are added at the wet end of the paper machine, and serve to fill the sheet pigments are added at the size press and serve to alter the surface of the sheet. The most common fillers are mineral pigments, eg, clay, titanium dioxide [13463-67-7] calcium carbonate, siUca [7631-86-9], hydrated alumina [21645-51 -2], and talc [14807-96-6]. [Pg.21]

The kinetics of the formation of the magnesium hydroxide and calcium carbonate are functions of the concentration of the bicarbonate ions, the temperature, and the rate of release of CO2 from the solution. At temperatures up to 82°C, CaCO predominates, but as the temperature exceeds 93°C, Mg(OH)2 becomes the principal scale. Thus, ia seawater, there is a coasiderable teadeacy for surfaces to scale with an iacrease ia temperature. [Pg.241]

The lime or lime—soda process results in the precipitation of calcium as calcium carbonate and magnesium as magnesium hydroxide. The solubiUties of these compounds are shown in Figure 4 as functions of pH. When lime is used alone, only the carbonate hardness is reduced. The carbonate hardness is present as calcium or magnesium bicarbonate. The additional use of soda ash can reduce the noncarbonate hardness by providing additional carbonate ion. The reactions involved in the various steps of the process are Hsted below ... [Pg.278]

The needed amounts of lime and soda ash can be calculated from the stoichiometry of the reactions. The effluent quaUty is a function of the solubihties of calcium carbonate and magnesium hydroxide and of the quantities of softening chemicals added. The acceptable level of total hardness can be decided and usually is 70—120 mg/L (265—454 mg/gal), expressed as CaC03. The sum of the solubihties of calcium carbonate and magnesium hydroxide is ca 50—70 mg/L (190—265 mg/gal), depending upon the pH. The sum of the concentrations of the carbonic species HCO/ +, ... [Pg.279]

Sa.tura.tion Index. Materials of constmction used in pools are subject to the corrosive effects of water, eg, iron and copper equipment can corrode whereas concrete and plaster can undergo dissolution, ie, etching. The corrosion rate of metallic surfaces has been shown to be a function of the concentrations of Cl ,, dissolved O2, alkalinity, and Ca hardness as well as buffer intensity, time, and the calcium carbonate saturation index (35). [Pg.300]

The choice of selected raw materials is very wide, but they must provide calcium oxide (lime), iron oxide [1309-37-1/, siHca, and aluminum oxide (alumina). Examples of the calcereous (calcium oxide) sources are calcium carbonate minerals (aragonite [14791-73-2] calcite [13397-26-7] limestone [1317-65-3] or mad), seasheUs, or shale. Examples of argillaceous (siHca and alumina) sources are clays, fly ash, mad, shale, and sand. The iron oxide commonly comes from iron ore, clays, or mill scale. Some raw matedals supply more than one ingredient, and the mixture of raw matedals is a function of their chemical composition, as deterrnined by cost and availabiHty. [Pg.322]

Calcium carbonate is one of the most common filler/extenders used in the paint and coatings industry. Consumer and contractor paint formulas can include products from submicrometer size to coarse mesh sizes. The main function of calcium carbonate in paint is as a low cost extender. It is also used to improve brightness, appHcation properties, stabiHty, and exposure resistance. Coarse products help to lower gloss and sheen or even provide textured finishes. The selection of product type and particle size is deterrnined by the desired performance and cost of the coating. [Pg.411]

In other parts of the world, plywood adhesive fillers are obtained from local sources and may be quite different than those used in North America. In Southeast Asia, banana flour is quite important. In Europe, calcium carbonate (chalk) is often used. Nearly any fibrous material or fine particulate material capable of forming a functionally stable suspension can be made to work if the formulator is sufficiently skillful. However, the mix formulator will be very specific about the type and grade of filler to be used in a particular mix. Substitutions may lead to serious gluing problems. [Pg.893]

A simple and direct approach to 10(5 4j H)<2Z)eo-5-lceto derivatives lacking functionality in ring A is the controlled pinacol rearrangement of vicinal cw-diols analogous to the process described in the previous section. An example is the reaction of cholestane-4a,5a-diol 4-tosylate (136) with 1 mole-equivalent of potassium t-butoxide or with dimethylforraamide-calcium carbonate at reflux which gives a quantitative yield of Q(5ApH)abeo-cholestan-5-one (137). ... [Pg.398]

Although the terpolymers have the widest possible range of functions, providing not only basic calcium carbonate control, but also high-stress capability and dispersion of colloids, plus iron, phos-... [Pg.447]

Bone is a porous tissue composite material containing a fluid phase, a calcified bone mineral, hydroxyapatite (HA), and organic components (mainly, collagen type). The variety of cellular and noncellular components consist of approximately 69% organic and 22% inorganic material and 9% water. The principal constiments of bone tissue are calcium (Ca ), phosphate (PO ), and hydroxyl (OH ) ions and calcium carbonate. There are smaller quantities of sodium, magnesium, and fluoride. The major compound, HA, has the formula Caio(P04)g(OH)2 in its unit cell. The porosity of bone includes membrane-lined capillary blood vessels, which function to transport nutrients and ions in bone, canaliculi, and the lacunae occupied in vivo by bone cells (osteoblasts), and the micropores present in the matrix. [Pg.413]

Figure 8. Partition coefficients (Kd) for Th and Pa and the fractionation factor (F) between Th and Pa plotted as a function of the opal and calcium carbonate percentage in settling particulate material. Note the tendency for the Kd for Th to increase with increasing carbonate fraction and decrease with increasing opal fraction. Pa shows the opposite behavior so that F increases with low opal fraction or high carbonate fraction. This plot is modified from Chase et al. (in press-b) but excludes the continental margin data also shown in that study and instead focuses exclusively on open-ocean sites. Figure 8. Partition coefficients (Kd) for Th and Pa and the fractionation factor (F) between Th and Pa plotted as a function of the opal and calcium carbonate percentage in settling particulate material. Note the tendency for the Kd for Th to increase with increasing carbonate fraction and decrease with increasing opal fraction. Pa shows the opposite behavior so that F increases with low opal fraction or high carbonate fraction. This plot is modified from Chase et al. (in press-b) but excludes the continental margin data also shown in that study and instead focuses exclusively on open-ocean sites.
White pigments such as calcium carbonate, aluminum hydroxide, silica, kaolin, or urea-formaldehyde resin are used as filler. The filler functions as an absorbent of melted components to prevent their adhesion on the thermal head. Thus, the filler is required to be high in oil absorption and not to wear the thermal head. [Pg.202]

As discussed in Chapter 10, a wide variety of additives is used in the polymer industry. Stabilizers, waxes, and processing aids reduce degradation of the polymer during processing and use. Dyes and pigments provide the many hues that we observe in synthetic fabrics and molded articles, such as household containers and toys. Functional additives, such as glass fibers, carbon black, and metakaolins can improve dimensional stability, modulus, conductivity, or electrical resistivity of the polymer. Fillers can reduce the cost of the final part by replacing expensive resins with inexpensive materials such as wood flour and calcium carbonate. The additives chosen will depend on the properties desired. [Pg.231]

I consider a system in which organic matter is oxidized at a steady rate that is a specified function of depth in uniform calcium carbonate sediments. The oxidation of organic matter increases the total dissolved carbon in the pore water of the sediment. The resultant increase in acidity causes the dissolution of calcium carbonate and a consequent increase in alkalinity as well as another increase in total dissolved carbon. The total dissolved carbon and alkalinity are transported by diffusion between different depths in the sediment. [Pg.151]


See other pages where Functional calcium carbonate is mentioned: [Pg.342]    [Pg.143]    [Pg.369]    [Pg.210]    [Pg.8]    [Pg.58]    [Pg.268]    [Pg.300]    [Pg.557]    [Pg.127]    [Pg.411]    [Pg.394]    [Pg.259]    [Pg.55]    [Pg.918]    [Pg.330]    [Pg.431]    [Pg.638]    [Pg.461]    [Pg.796]    [Pg.143]    [Pg.144]    [Pg.157]    [Pg.270]    [Pg.346]    [Pg.414]    [Pg.118]    [Pg.174]    [Pg.33]    [Pg.195]    [Pg.196]    [Pg.269]    [Pg.23]    [Pg.210]    [Pg.255]    [Pg.90]   
See also in sourсe #XX -- [ Pg.448 ]




SEARCH



Calcium carbonate

Calcium functions

Carbon function

Carbon functionalization

Carbon functionalized

Carbon functionalizing

Carbonate functionality

© 2024 chempedia.info