Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Friedel-Crafts catalysts chlorides

Aldehyde Synthesis. Formylation would be expected to take place when formyl chloride or formic anhydride reacts with an aromatic compound ia the presence of aluminum chloride or other Friedel-Crafts catalysts. However, the acid chloride and anhydride of formic acid are both too unstable to be of preparative iaterest. [Pg.559]

Friedel-Crafts catalysts are electron acceptors, ie, Lewis acids. The alkylating ability of ben2yl chloride was selected to evaluate the relative catalytic activity of a large number of Lewis acid haUdes. The results of this study suggest four categories of catalyst activity (200) (Table 1). [Pg.564]

Acid Halides (Lewis Acids). AH metal haUde-type Lewis catalysts, generally known as Friedel-Crafts catalysts, have an electron-deficient central metal atom capable of electron acceptance from the basic reagents. The most frequendy used are aluminum chloride and bromide, followed by... [Pg.564]

Solid Superacids. Most large-scale petrochemical and chemical industrial processes ate preferably done, whenever possible, over soHd catalysts. SoHd acid systems have been developed with considerably higher acidity than those of acidic oxides. Graphite-intercalated AlCl is an effective sohd Friedel-Crafts catalyst but loses catalytic activity because of partial hydrolysis and leaching of the Lewis acid halide from the graphite. Aluminum chloride can also be complexed to sulfonate polystyrene resins but again the stabiUty of the catalyst is limited. [Pg.565]

Weak Base Anion Exchangers. Both styreoic and acryHc copolymers can be converted to weak base anion-exchange resias, but differeat syathetic routes are aecessary. Styreae—DVB copolymers are chloromethylated and aminated ia a two-step process. Chloromethyl groups are attached to the aromatic rings (5) by reactioa of chloromethyl methyl ether [107-30-2] CH2OCH2CI, with the copolymer ia the preseace of a Friedel-Crafts catalyst such as aluminum chloride [7446-70-0], AlCl, iroa(III) chloride [7705-08-0], FeCl, or ziac chloride [7646-85-7], ZaCl. ... [Pg.374]

Ai lepiesents an aiyl group. Diaiyl products are obtained after long reaction times. Other Friedel-Crafts catalysts, eg, ZnCl2, FeCl2, FIF, and BF, can also be used. In most cases, stoichiometric amounts of the catalyst ate requited. Flowever, strong complexation of the phosphine by the catalyst necessitates separation by vacuum distillation, hydrolysis, or addition of reagents such as POCl to form more stable aluminum chloride complexes. Whereas yields up to 70—80% are possible for some aryl derivatives, yields of aliphatic derivatives are generally much less (19). [Pg.361]

Koch Chemical Company is the only U.S. suppHer of all PMBs (except hexamethylbenzene). Its process has the flexibility of producing isodurene, prehnitene, and pentamethylbenzene, should a market develop. Koch s primary process (20) is based on isomerization, alkylation, and disproportionation conducted in the presence of a Friedel-Crafts catalyst. For the synthesis of mesitylene and hemimellitene, pseudocumene is isomerized. If durene, isodurene, or prehnitene and pentamethylbenzene are desired, pseudocumene is alkylated with methyl chloride (see Alkylation Friedel-CRAFTSreactions). [Pg.506]

Quaternary Salts. Herbicides paraquat (20) and diquat (59) are the quaternary salts of 4,4 -bipyridine (19) and 2,2 -bipyridine with methyl chloride and 1,2-dibromoethane, respectively. Higher alkylpyridinium salts are used in the textile industry as dye ancillaries and spin bath additives. The higher alkylpyridinium salt, hexadecylpytidinium chloride [123-03-5] (67) (cetylpyridinium chloride) is a topical antiseptic. Amprolium (62), a quaternary salt of a-picohne (2), is a coccidiostat. Bisaryl salts of butylpyridinium bromide (or its lower 1-alkyl homologues) with aluminum chloride have been used as battery electrolytes (84), in aluminum electroplating baths (85), as Friedel-Crafts catalysts (86), and for the formylation of toluene by carbon monoxide (87) (see QuaternaryAA ONiUM compounds). [Pg.336]

N-Acylation is readily carried out by reaction of the alkaU metal salts with the appropriate acid chloride. C-Acylation of pyrroles carrying negative substituents occurs in the presence of Friedel-Crafts catalysts. Pyrrole and alkylpyrroles can be acylated noncatalyticaHy with an acid chloride or an acid anhydride. The formation of trichloromethyl 2-pyrryl ketone [35302-72-8] (20, R = CCI3) is a particularly useful procedure because the ketonic product can be readily converted to the corresponding pyrrolecarboxyUc acid or ester by treatment with aqueous base or alcohoHc base, respectively (31). [Pg.357]

In this appHcation, ZSM-5 acts as a strong, soHd acid, and may be viewed as supported on the surfaces of the crystalline zeoHte stmcture. The older, Friedel-Crafts aluminum chloride catalyzed process for ethylbenzene produces considerably more by-products and suffers from the corrosivity of the catalyst system. Because of the intermediate pore size of ZSM-5, those reactions that produce coke from larger molecules that cannot enter the ZSM-5 pore stmcture are significantly reduced, which greatly extends catalyst lifetime. [Pg.197]

The chlorination of benzene can theoretically produce 12 different chlorobenzenes. With the exception of 1,3-dichlorobenzene, 1,3,5-trichlorobenzene, and 1,2,3,5-tetrachlorobenzene, all of the compounds are produced readily by chlorinating benzene in the presence of a Friedel-Crafts catalyst (see Friedel-CRAFTS reactions). The usual catalyst is ferric chloride either as such or generated in situ by exposing a large surface of iron to the Hquid being chlorinated. With the exception of hexachlorobenzene, each compound can be further chlorinated therefore, the finished product is always a mixture of chlorobenzenes. Refined products are obtained by distillation and crystallization. [Pg.46]

Ethylbenzene is prepared by reaction of ethylene and benzene in the presence of a Friedel-Crafts catalyst such as aluminium chloride at about 95°C (Figure 16.3). [Pg.427]

A study of alkylations with a group of substituted benzyl halides and a range of Friedel-Crafts catalysts has provided insight into the trends in selectivity and orientation that accompany changes in both the alkyl group and the catalysts. There is a marked increase in substrate selectivity on going from / -nitrobenzyl chloride to /i-methoxybenzyl chloride. For example, with titanium tetrachloride as the catalyst, Aitoi Abenz increases from 2.5 to 97. This increase in substrate selectivity is accompanied by an increasing preference for para substitution. With /i-nitrobenzyl chloride, the ortho para ratio is 2 1 (the... [Pg.581]

Still another possibility of isomerization is illustrated by the easy interconversions between pentaphenylpentadienoie aeid chloride and 2-chloropentaphenyl-3-eyelopenten-l-one. Interestingly, 2,4,6-trimethylpjrrylium iodide maj be sublimed without decomposition in a vacuum, possibly as a covalent 6-iodo-4-methyl-3,5-heptadien-2-one or 2-iodo-2,4,6-trimethyl-2H-pyran valenee isomer. In a related case, chlorocyclopropenes are covalent and are converted into cyclo-propenium derivatives only by the action of Friedel-Crafts catalysts (electron-deficient metallic chlorides) (ef. also Section II,C, 2,c.)... [Pg.277]

The course of the reaction may involve either the acylation of the ketone to a -diketonic intermediate following thereupon the pathway in Section II, C, 2, a, or alternatively the condensation of two moles of ketone to yield an intermediate dypnone which then undergoes acylation following the pathway in Section II,C, l,a. Dilthey and Fischer thought the first alternative more plausible, on the basis of reaction yields, and this lead them to explore the pathway in Section II,C,2,a. Schneider and Ross and Diels and Alder believed that the second alternative operates. Both views are plausible since acylations of methyl ketones to S-diketones are known to take place in the conditions of this reaction, and dypnone ha.s been isolated from acetophenone on treatment with Friedel-Crafts catalysts, in the absence of an acid anhydride or chloride (an excess of catalyst... [Pg.308]

Singer and co-workers have investigated the acylation reactions of ferrocene in ionic liquids made from mixtures of [EMIMJI and aluminium(III) chloride (Scheme 6.1-5) [9, 10]. The ionic liquid acts both as solvent and as source of the Friedel-Crafts catalyst. In mildly acidic (X(A1C13) > 0.5 [EMIM]I/A1C13, the monoacetylated ferrocene was obtained as the major product. In strongly acidic [EMIM]I/AlCl3 X(A1C13) = 0.67 the diacylated ferrocene was the major product. Also, when R = alkyl, the diacetylated product was usually the major product, but for R = Ph, the monoacetylated product was favored. [Pg.291]

McAfee of Gulf Refining Co. discovered that a Friedel-Crafts aluminum chloride catalyst could catalytically crack heavy oil. [Pg.4]

Satchell476 also measured the first-order rate coefficients for dedeuteration of [4-3H]-anisole by acetic acid or acetic acid-hydrochloric acid media containing zinc and stannic chlorides (Table 128). The rates here paralleled the indicator ratio of 4-nitrodiphenylamine and 4-chloro-2-nitroaniline, so that the implication is that a linear relationship exists between log k and the unknown H0 values. The results also show the rate-enhancing effect of these Friedel-Crafts catalysts, presumably through additional polarisation of the catalysing acid, for in the absence of them, exchange between acetic acid and anisole would be very slow. Other studies relating to the effect of these catalysts are reported below (p. 238). [Pg.207]

Allylmagnesium bromide, 41, 49 reaction with acrolein, 41, 49 5-Allyl-l,2,3,4,5-pentachlorocyclopen-tadiene, 43, 92 Allyltriphenyltin, 41, 31 reaction with phenyllithium, 41, 30 Aluminum chloride, as catalyst, for isomerization, 42, 9 for nuclear bromination and chlorination of aromatic aldehydes and ketones, 40, 9 as Friedel-Crafts catalyst, 41, 1 Amidation, of aniline with maleic anhydride, 41, 93... [Pg.106]

Diaryl sulfides can be prepared by treating aromatic compounds with SCI, and a Friedel-Crafts catalyst. Other reagents that can bring about the same result are S2CI2, thionyl chloride, and even sulfur itself. A catalyst is not always necessary. [Pg.703]

Diaryl sulfones can be formed by treatment of aromatic compounds with aryl sulfonyl chlorides and a Friedel-Crafts catalyst. This reaction is analogous to Friedel-Crafts acylation with carboxylic acid halides (11-14). In a better procedure, the aromatic compound is treated with an aryl sulfonic acid and P2O5 in polypho-sphoric acid. Still another method uses an arylsulfonic trifluoromethanesulfonic anhydride (ArS020S02CF3) (generated in situ from ArS02Br and CF3S03Ag) without a catalyst. ... [Pg.704]

Finally, in an aromatic series, the effect of allyl chloride on benzene or toluene in the presence of ethyl aluminium dichloride (Friedel-Crafts catalysts) at -70 C is very violent and has led to a large number of accidents. It is thought that the exothermicity of the reaction below (in the case of benzene) caused these accidents, but one can not exclude a violent polymerisation of allyl chloride. [Pg.275]

The first compounds of this class46 have been obtained via Route A. The initial condensation of phthalic anhydride with dimethylaniline requires a Friedel-Crafts catalyst, while condensation of the resulting benzophenone with the indole requires acetic anhydride. For Route B preparation of the intermediate l,2-dimethyl-3-(2-carboxybenzoyl)indole has also been described47 by condensation of the two components in the presence of aluminum chloride. However, in our experience, aluminum chloride is, in this case, unnecessary, thus rendering this route the method of choice. [Pg.104]

Friedel-Crafts Reactions on PPO and Properties of the Resulting Polymers. There are two hydrogens on the aromatic ring of PPO which can react through Friedel-Crafts reactions. The substitution of the first available position from the aromatic ring occurs easily by the treatment of the PPO with sulfonyl chloride or acid chlorides in the presence of a Friedel-Crafts catalyst. The remaining aromatic hydrogen could not be removed by a second abstraction reaction, and consequently only monosubstitution was achieved. [Pg.51]

APSQ was synthesized by acetylation of PSQ in the presence of a Friedel-Crafts catalyst. A solution of poly(phenylsilsesquioxane) (PSQ) in acetyl chloride (AcCl) was reacted with a solution of anhydrous AICI3 in AcCl below 20°C. After stirring for 90 min, the solution was poured into ice water to obtain APSQ. The details of this process are described elsewhere.11 ... [Pg.176]

The metal halide catalysts include aluminum chloride, aluminum bromide, ferric chloride, zinc chloride, stannic chloride, titanium tetrachloride and other halides of the group known as the Friedel-Crafts catalysts. Boron fluoride, a nonmetal halide, has an activity similar to that of aluminum chloride. [Pg.23]

Aluminum chloride, boron fluoride and certain other Friedel-Crafts catalysts catalyze the polymerization of isobutylene, at temperatures below about —70° recent work has indicated that the presence of a promoter such as water is usually necessary (see Section V). A rubberlike polymer is obtained. [Pg.24]

The low temperature polymerization of isobutylene (that is, polymerization at temperatures below about —70°) in the presence of Friedel-Crafts catalysts (particularly boron fluoride, aluminum chloride, and titanium tetrachloride, has been studied quite intensely. The reaction is commercially important because it yields a high molecular weight... [Pg.70]

The catalytic activity of certain of the Friedel-Crafts catalysts was shown to decrease over a very wide range in the series boron fluoride, aluminum bromide, titanium tetrachloride, titanium tetrabromide, boron chloride, boron bromide and stannic chloride (Fairbrother and Seymour, mentioned in Plesch al., 83). When boron fluoride is added to isobutylene at dry ice temperatures, the olefin is converted to a solid polymer within a very few seconds. The time required for complete polymerization with aluminum bromide hardly extends to a few minutes while reaction times of hours are required with titanium chloride and periods of days with stannic chloride. [Pg.71]

Iodine monofluoride, prepared in situ from the elements, has been recommended for the iodination of deactivated substrates without the need for Friedel-Crafts catalysts (90JOC3553) and may find application with heterocyclic compounds. The corresponding chloride has been used frequently [82CJC554 83ACS(B)345 84CHE492, 84M11 86JHC1849 ... [Pg.298]

In carrying out the alkylation of benzene the propylene tetramer is reacted with an excess of benzene in the presence of a Friedel-Crafts catalyst such as aluminum chloride, boron trifluoride, or hydrofluoric acid. With careful control of this reaction, yields of alkylate boiling from 500° to 650° F. are of the order of 80% of theory with the losses due to slight olefin degradation and dialkylation. Inspection of commercial aromatic products, believed to be typical of this process, indicates the composition to be that shown in... [Pg.331]


See other pages where Friedel-Crafts catalysts chlorides is mentioned: [Pg.113]    [Pg.552]    [Pg.557]    [Pg.561]    [Pg.561]    [Pg.297]    [Pg.171]    [Pg.718]    [Pg.721]    [Pg.226]    [Pg.194]    [Pg.192]    [Pg.292]    [Pg.24]    [Pg.74]    [Pg.159]    [Pg.452]    [Pg.306]   
See also in sourсe #XX -- [ Pg.24 ]




SEARCH



Catalysts Friedel Crafts

Chloride, catalysts

Friedel catalyst

© 2024 chempedia.info