Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Friedel-Crafts alkylation continued

However, a Friedel-Crafts alkylation can get out of hand The process can continue until it replaces all the hydrogen atoms. For example, the alkylation of benzene can lead to the product pictured in Figure 7-22. To minimize the possibility of multiple alkylations, use a large excess of the aromatic compound. [Pg.110]

A considerable difference between Friedel-Crafts alkylation and acylation is the amount of the Lewis acid necessary to induce the reaction. Friedel-Crafts alkylation requires the use of only catalytic amounts of the catalyst. Lewis acids, however, form complexes with the aromatic ketones, the products in Friedel-Crafts acylations, and the catalyst is thus continuously removed from the system as the reaction proceeds. To achieve complete conversion, therefore, it is necessary to use an equimolar amount of Lewis acid catalyst when the acylating agent is an acyl halide. Optimum yields can be obtained using a 1.1 molar excess of the catalyst. With... [Pg.409]

Supercritical hydrogenation is just one example of continuous reactions which can be carried out in SCCO2 solution. Other reactions which have been carried out successfully include Friedel-Crafts alkylation of aromatics by alcohols [64], the dehydration of alcohols to form ethers [65] (using acid catalysts), and the hydroformylation of alkenes [52] (using rhodium catalysts immobilized on Si02). In each of these reactions, it is possible to obtain a selectivity which is at least as good, and often better, than with conventional solvents. However, the precise role of the scCC>2 in these reactions is not as obvious as in supercritical hydrogenation. [Pg.481]

Friedel Crafts alkylation has been studied by Poliakoff in a continuous-flow reactor (Hitzler et al., 1998a). The reaction of mesitylene and anisole with propene or 2-propanol over a solid acid catalyst (based on a Deloxan support) in sc C02 provided exclusive formation of the monoalkylated products at 50% conversion. Use of the continuous-flow reactor prevents catalyst deactivation, and permits use of comparatively small reactors. The... [Pg.36]

In comparison with molecular catalysts, solid catalysts can be isolated from the reaction mixtures by filtration or used in continuous processes this is both environmentally friendly and useful in laboratory-scale experiments. The most important reactions catalyzed by solid superbases are isomerization reactions and the alkylation of substituted arenes in the side chain (Scheme 2). They proceed at room temperature or below with high yield (typically >99%). The surperbase-cata-lyzed alkylation of aromatic compounds complements the acid-type Friedel-Crafts alkylation and acylation, because the latter results in ring alkylation, whereas the former results in side-chain alkylation. [Pg.411]

Continuous Friedel-Crafts alkylation, with high selectivity, of mesitylene and ani-sole with propene or propan-2-ol in scCsHe or SCCO2 using a heterogeneous poly-siloxane solid acid catalyst (Deloxan, ASP 1/7) is described by Poliakoff et al. [52] (see Chapter 12). No comparison was made with the continuous alkylation in a conventional solvent and it is, therefore, diffiadt to judge the technical potential of this approach. [Pg.412]

Poliakoff et al. introduced the supercritical phase to the Friedel-Crafts alkylation reaction by using SCCO2 or by making propene, one of the reactants, the supercritical fluid [56]. This heterogeneous supercritical phase reaction was conducted continuously and the selectivity was very high if a solid acid Deloxan catalyst was utilized. [Pg.407]

Continuous Friedel-Crafts alkylation in SCCO2 has been demonstrated using a fixed-bed flow reactor and Deloxan , a polysiloxane-based solid acid catalyst. ... [Pg.147]

Friedel-Crafts alkylation is one of the most frequently used and widely studied reactions in organic chemistry. Since the initial discovery by Charles Friedel and James Mason Crafts in 1877, a large number of applications have emerged for the construction of substituted aromatic compounds. Friedel-Crafts alkylation processes involve the replacement of C—H bond of an aromatic ring by an electrophilic partner in the presence of a Lewis acid or Bronsted acid catalyst. Particularly, catalytic asymmetric Friedel-Crafts alkylation is a very attractive, direct, and atom-economic approach for the synthesis of optically active aromatic compounds. However, it took more than 100 years from the discovery of this reaction until the first catalytic asymmetric Friedel-Crafts (AFC) alkylation of naphthol and ethyl pyruvate was realized by Erker in 1990. Nowadays, owing to continued efforts in developing... [Pg.214]

SCCO2 has also been used as a solvent with a silica-immobilized catalyst in metathesis reactions [25]. A heterogeneous catalytic process is developed, in which catalyst leaching is avoided but the reactivity is lower than when using a homogeneous catalyst This application has also been extended to continuous-flow processes for hydrogenation [26], Friedel-Crafts alkylations [27], etherification [28], and hydroformylation [29] reactions. [Pg.372]

The asymmetric Friedel-Crafts alkylation (FC A) is one of the most powerful organic transformations to synthesize optically active aromatic compounds bearing chiral benzylic carbon centers. Since the first example of organocatalytic FCA reaction reported in 2001, continuous interest in this area has resulted in the development of many effective transformations and publications. It s worthy to note that a few important reviews and books have appeared in the literature [1]. This chapter aims to review the progress in the last decade and is organized on the base of different alkylation reagents employed. [Pg.313]

Hitzler et al. (316) report the Friedel-Crafts alkylation of mesitylene (C6H3Me3) and anisole with propene or 2-propanol using a heterogeneous polysiloxane-supported solid acid catalyst (Degussa s Deloxan) in a small fixed-bed continuous reactor (10-ml volume) using SCF propene or CO2 as the reaction solvent. For the alkylation of mesitylene with propene at 160-180°C and 200 bar, yield of the monoalkylated product (l-isopropyl-2,4,6-trimethylbenzene) was only approximately 25% due to the formation of the dialkylated product as well as dimers and trimers of propene. Selectivity to the monoalkylated product was significantly higher (40% yield) for alkylation with 2-propanol in scCOa. [Pg.158]

MG Hitzler, FR Small, SK Ross, M Poliakoff. Friedel-Crafts alkylation in supercritical fluids continuous, selective and clean. Chem Cormnun 1998 359-360. [Pg.187]

Asymmetric Friedel-Crafts alkylations of indoles with a,p-unsaturated carbonyl compounds have been and continue to be of significant interests in synthesizing chiral indole alkaloids. Following the very successful iminium-catalysis with enals by MacMillan s catalyst [47], Chen and Melchiorre have independently reported asymmetric Friedel-Crafts alkylation of indoles with a,P-unsaturated aryl ketones [48] using similar cinchona-alkaloid derived catalysts 77 and 91, respectively (Scheme 5.24) [49]. In both cases, the proper choice of an acidic additive has been shown to be essential for catalytic activity and stereoselectivity. [Pg.161]

Friedel-Crafts (FC) alkylation, acylation, and sulfonylation reactions are important C-C or C-S bond forming reactions in organic chemistry [60-64], Since the seminal works of Charles Friedel and James Mason Crafts published in 1877 in which they report the use of A1C13 for alkylation reactions [65], the search for more active catalysts, especially for acylation reactions, continues. Due to increasing environmental concerns, the need for green catalysts and processes for the FC reaction has gained significant importance. Bi(III) salts have shown to be efficient and recoverable catalysts with applicability in this area [13]. [Pg.147]

Friedel-Crafts catalysts (corrosion, continuous catalyst makeup). Although it gives a broader spectrum of alkylated products, recycling and transalkylation ensure high ethylbenzene yields. Steamed ZSM-5 and chrysozeolite ZSM-5 were shown by Union Carbide to afford ethylbenzene with high selectivity in the alkylation of benzene with ethanol.317... [Pg.258]

In contrast, continuous flow reactors are already being used for hydrogenation reactions industrially (Licence el al., 2003). They are simple to construct and modify, and possess excellent mass- and heat-transfer properties. In academia, flow reactors have been used in conjunction with a variety of heterogeneous catalysts to carry out many reactions, including hydrogenations, dehydrogenations, hydroformylations, Friedel-Crafts acylations and alkylations, etherifications and oxidations (Hyde et al., 2001). [Pg.54]

Alternative catalysts for this reaction are polymer-supported alkyl sulfonic acids [231], even if they show lower performances than the zeolite. Two of the problems in the reactions are the need to vaporize the reactant and the periodic regeneration of the rapidly deactivating zeolite catalysts. It was thus proposed recently that continuous catalytic Friedel-Crafts acylation can be performed in the biphasic medium of an ionic liquid and supercritical carbon dioxide [232]. [Pg.133]


See other pages where Friedel-Crafts alkylation continued is mentioned: [Pg.477]    [Pg.52]    [Pg.165]    [Pg.207]    [Pg.254]    [Pg.607]    [Pg.127]    [Pg.51]    [Pg.258]    [Pg.557]    [Pg.114]    [Pg.198]    [Pg.159]    [Pg.194]    [Pg.410]    [Pg.48]    [Pg.37]    [Pg.189]    [Pg.581]    [Pg.275]    [Pg.105]    [Pg.115]    [Pg.163]    [Pg.601]    [Pg.163]    [Pg.1400]    [Pg.29]   


SEARCH



Alkylation continued)

Friedel Crafts alkylation

Friedel-Crafts alkylations

© 2024 chempedia.info