Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalyst continuous

Phosgene addition is continued until all the phenoHc groups are converted to carbonate functionahties. Some hydrolysis of phosgene to sodium carbonate occurs incidentally. When the reaction is complete, the methylene chloride solution of polymer is washed first with acid to remove residual base and amine, then with water. To complete the process, the aqueous sodium chloride stream can be reclaimed in a chlor-alkah plant, ultimately regenerating phosgene. Many variations of this polycarbonate process have been patented, including use of many different types of catalysts, continuous or semicontinuous processes, methods which rely on formation of bischloroformate oligomers followed by polycondensation, etc. [Pg.283]

As the polymer molecules form and dissociate from the catalyst, they remain ia solution. The viscosity of the solution increases with increasing polymer concentration. The practical upper limit of solution viscosity is dictated by considerations of heat transfer, mass transfer, and fluid flow. At a mbber soflds concentration of 8—10%, a further increase in the solution viscosity becomes impractical, and the polymerisation is stopped hy killing the catalyst. This is usually done by vigorously stirring the solution with water. If this is not done quickly, the unkilled catalyst continues to react, leading to uncontrolled side reactions, resulting in an increase in Mooney viscosity called Mooney Jumping. [Pg.504]

Around 500 K, the catalyst consumes H2, as shown by the sharp peak, while simultaneously H2S and some additional H2O are produced, which indicates that the catalyst has taken up too much sulfur at lower temperatures, which is now released in the form of H2S. At higher temperatures, the catalyst continues to exchange oxygen for sulfur until all the molybdenum is present as M0S2. TPS has proven very useful in studying the sulfidation of M0O3 as well as Co and Ni promoted catalysts. [Pg.155]

The performance of the Sonogashira reaction is claimed to be the first example of a homogeneously metal-catalyzed reaction conducted in a micro reactor [120], Since the reaction involves multi-phase postprocessing which is needed for the separation of products and catalysts, continuous recycling technology is of interest for an efficient production process. Micro flow systems with micro mixers are one way to realize such processing. [Pg.483]

Transition-metal chemistry is currently one of the most rapidly developing research areas. The record of investigation for compounds with metal silicon bonds is closely comparable to that for silicones it was in 1941 when Hein discovered the first metal silicon complex, followed by Wilkinson in 1956. A milestone in the development of this chemistry was Speier s discovery of the catalytic activity of nobel metal complexes in hydrosilylation reactions in 1977. Hydrosilylation is widely used in modem organic syntheses as well as in the preparation of organo functionalized silicones. Detailed investigations of the reaction mechanisms of various catalysts continue to be subject of intense research efforts. [Pg.167]

Summary of Relevant Literature on Organic Modification of Cobalt Catalysts (continued)... [Pg.4]

At higher temperatures, the catalyst continues to exchange oxygen for sulfur until all molybdenum is present as MoS2 ... [Pg.35]

Over time, scientists have built up a large body of knowledge about many different catalysts and enzymes. This knowledge has been put to good use in industry. Difficult and expensive industrial processes have been made faster, cheaper, and easier through the use of catalysts and enzymes. For example, enzymes are used in the pharmaceutical industry, in paper-making and recycling processes, and in the petroleum industry. Many more industrial uses of catalysts and enzymes are possible, and research into catalysts continues. [Pg.314]

As was shown here in some examples, the field of catalysis over zeolites, although marnre, is still very much alive. The chemists who work with the synthesis zeolites continue to be very creative, the focus now being placed on the synthesis of materials that can catalyze reactions other than the acidic ones and/or reactions of bulkier molecules, that is, synthesis of zeolites with larger micropores or with a very large external surface, such as nanosize and delaminated zeolites. New concepts related to the mode of action of zeolite catalysts continue to emerge, as shown here with the shape selectivity of the external surface. These concepts are particularly useful to scientifically design selective and stable catalysts. [Pg.248]

PtMo alloys are not as effective as PtRu for methanol, or ethanol, oxidation. As shown in Figure 29, the d band vacancy per Pt atom for the PtMo/C catalyst continues to increase until 0.6 V vs RHE, in contrast to the behavior of PtRu/C. ° The authors attribute this difference to the lack of removal of the Cl fragments from the particle surface by the oxy-hydroxides of Mo. However, the difference in the electrocatalytic activity of PtRu and PtMo catalysts may be attributed to ensemble effects as well as electronic effects. The former are not probed in the white line analysis presented by Mukerjee and co-workers. In the case of methanol oxidation, en-... [Pg.391]

Figure 3A. Microprobe analysis of a DFCC system containing 2% V on the host catalyst. Continued. Figure 3A. Microprobe analysis of a DFCC system containing 2% V on the host catalyst. Continued.
Organometallic reagents and catalysts continue to be of considerable importance, as illustrated in several procedures CAR-BENE GENERATION BY a-ELIMINATION WITH LITHIUM 2,2,6,6-TETRAMETHYLPIPERIDIDE l-ETHOXY-2-p-TOL-YLCYCLOPROPANE CATALYTIC OSMIUM TETROXIDE OXIDATION OF OLEFINS PREPARATION OF cis-1,2-CYCLOHEXANEDIOL COPPER CATALYZED ARYLA-TION OF /3-DICARBONYL COMPOUNDS 2-(l-ACETYL-2-OXOPROPYL)BENZOIC ACID and PHOSPHINE-NICKEL COMPLEX CATALYZED CROSS-COUPLING OF GRIG-NARD REAGENTS WITH ARYL AND ALKENYL HALIDES 1,2-DIBUTYLBENZENE. [Pg.233]


See other pages where Catalyst continuous is mentioned: [Pg.285]    [Pg.119]    [Pg.524]    [Pg.331]    [Pg.90]    [Pg.393]    [Pg.194]    [Pg.130]    [Pg.70]    [Pg.154]    [Pg.268]    [Pg.429]    [Pg.654]    [Pg.178]    [Pg.359]    [Pg.20]    [Pg.67]    [Pg.538]    [Pg.3]    [Pg.77]    [Pg.31]    [Pg.646]    [Pg.205]    [Pg.783]    [Pg.460]    [Pg.677]   
See also in sourсe #XX -- [ Pg.623 ]




SEARCH



Catalyst [continued)

© 2024 chempedia.info