Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Free radicals disproportionation reaction

For proteins and peptides having sulfydryl or mercaptal side chains, free radical disproportionation reactions such as the ones reported by... [Pg.43]

The free radical polymerization of HPMA in the presence of mercaptans involves two different initiation mechanisms (Scheme 2) [26]. One is the initiation by RS radicals from chain transfer agent the other appears to be the direct initiation by the primary isobutyronitrile (IBN) radicals formed by the decomposition of AIBN [27]. The RS are formed by either the free radical transfer reaction of alkyl mercaptans with the IBN radicals or the chain transfer reaction of an active polymer chain with the mercaptans. The initiation by the RS radicals produces the ST polymers with a functional group at one end of the polymer chain. The initiation by IBN radicals leads to nonfunctional polymer chains with an IBN end group. The presence of the polymers with IBN end groups effects the purity and the functionality of ST polymers. As expected, the production of nonfunctionalized polymer chains is affected by reaction conditions. The polymerization is mainly terminated by chain transfer reaction with the mercaptans, but other termination mechanisms, such as disproportionation and recombination, take place depending on the reaction conditions [26]. [Pg.14]

The disproportionation reaction of the free radical chain can generate the monomer as a successive process. There are, however, some other issues regarding the propagation for free radical chain reactions. In addition to the "regular" propagation step, different reactions may occur in a so-called transfer step. In this step, the free radical chain reacts with another molecule and generates a different radical chain and a new polymeric molecule. There are two possible types of transfer reactions. The transfer step can be an intermolecular chain transfer or an intramolecular chain transfer. An example of an intermolecular chain transfer is... [Pg.23]

The most important free-radical chain reaction conducted in industry is the free-radical polymerization of ethylene to give polyethylene. Industrial processes usually use (/-Bu())2 as the initiator. The t-BuO- radical adds to ethylene to give the beginning of a polymer chain. The propagation part has only one step the addition of an alkyl radical at the end of a growing polymer to ethylene to give a new alkyl radical at the end of a longer polymer. The termination steps are the usual radical-radical combination and disproportionation reactions. [Pg.245]

Disproportionation reactions can occur with alkyl derivatives, e.g. two alkyl radicals can react together to form an alkane and an alkene. This reaction occurs in competition with dimerisation and other termination steps in free radical substitution reactions. [Pg.345]

The invention or discovery of a highly efficient free-radical chain reaction in an ideal world requires that each collision between a neutral free radical and the reagent or substrate in the propagation sequence is an effective one, especially since radical-radical combination and disproportionation reactions can occur at diffusion-controlled rates. [Pg.110]

At a higher irradiation dose a number of free radical initiated reactions like chain scission, disproportionation, recombination of macroradicals take place (refer to Figure 8 - Scheme-3). With the increase of vinyl... [Pg.166]

The principle of conservation of free valence is fulfilled only in reactions of a first order with respect to the free radical. In reactions involving two free radicals or atoms, the free valence, as a rule, is saturated to form molecules as reaction products. Such reactions are exothermic because new bonds are formed in them and they occur with high rate constants. For example, the recombination and disproportionation of all l radicals in solution occur with the rate constant of diffiisional collisions (10 -lO l/(mol s)). In the gas phase, atoms recombine with the frequency of triple colli-... [Pg.320]

Reaction with free radical species Reaction with free radical scavenger Radical stimulation on adjacent chain Intia-molecular hydrogen transfer Inter-molecular hydrogen transfer Abstraction of hydrogen Disproportionation ... [Pg.391]

Two mechanisms have been proposed for the Wurtz reaction (compare Section III,7) and for the Wurtz-Fittig reaction. According to one, sodium reacts with the alkyl halide to produce a sodium halide and a free radical, which subsequently undergoes coupling, disproportionation, etc. ... [Pg.508]

Tlie formation of initiator radicals is not the only process that determines the concentration of free radicals in a polymerization system. Polymer propagation itself does not change the radical concentration it merely changes one radical to another. Termination steps also occur, however, and these remove radicals from the system. We shall discuss combination and disproportionation reactions as modes of termination. [Pg.358]

Although primary and secondary alkyl hydroperoxides are attacked by free radicals, as in equations 8 and 9, such reactions are not chain scission reactions since the alkylperoxy radicals terminate by disproportionation without forming the new radicals needed to continue the chain (53). Overall decomposition rates are faster than the tme first-order rates if radical-induced decompositions are not suppressed. [Pg.103]

Another method for producing petoxycatboxyhc acids is by autoxidation of aldehydes (168). The reaction is a free-radical chain process, initiated by organic peroxides, uv irradiation, o2one, and various metal salts. It is terrninated by free-radical inhibitors (181,183). In certain cases, the petoxycatboxyhc acid forms an adduct with the aldehyde from which the petoxycatboxyhc acid can be hberated by heating or by acid hydrolysis. If the petoxycatboxyhc acid remains in contact with excess aldehyde, a redox disproportionation reaction occurs that forms a catboxyhc acid ... [Pg.119]

The minimum polydispersity index from a free-radical polymerization is 1.5 if termination is by combination, or 2.0 if chains ate terminated by disproportionation and/or transfer. Changes in concentrations and temperature during the reaction can lead to much greater polydispersities, however. These concepts of polymerization reaction engineering have been introduced in more detail elsewhere (6). [Pg.436]

Toluene, an aLkylben2ene, has the chemistry typical of each example of this type of compound. However, the typical aromatic ring or alkene reactions are affected by the presence of the other group as a substituent. Except for hydrogenation and oxidation, the most important reactions involve either electrophilic substitution in the aromatic ring or free-radical substitution on the methyl group. Addition reactions to the double bonds of the ring and disproportionation of two toluene molecules to yield one molecule of benzene and one molecule of xylene also occur. [Pg.175]

Although these reactions are thus closely related to the acyl-alkyl diradical disproportionation to ketenes, the stereospecificity of (55) -> (56) and (57) -> (58) shows that these hydroxyketones cannot proceed through free radicals capable of rotating about single bonds prior to the intramolecular hydrogen... [Pg.303]

Any substance capable of reacting with free radicals to form products that do not reinitiate the oxidation reaction could be considered to function as free-radical traps. The quinones are known to scavenge alkyl free radicals. Many polynuclear hydrocarbons show activity as inhibitors of oxidation and are thought to function by trapping free radicals [25]. Addition of R to quinone or to a polynuclear compound on either the oxygen or nitrogen atoms produces adduct radicals that can undergo subsequent dimerization, disproportionation, or reaction with a second R to form stable products. [Pg.401]

Mino and Kaizerman [12] established that certain. ceric salts such as the nitrate and sulphate form very effective redox systems in the presence of organic reducing agents such as alcohols, thiols, glycols, aldehyde, and amines. Duke and coworkers [14,15] suggested the formation of an intermediate complex between the substrate and ceric ion, which subsequently is disproportionate to a free radical species. Evidence of complex formation between Ce(IV) and cellulose has been studied by several investigators [16-19]. Using alcohol the reaction can be written as follows ... [Pg.503]

Correlated or geminate radical pairs are produced in unimolecular decomposition processes (e.g. peroxide decomposition) or bimolecular reactions of reactive precursors (e.g., carbene abstraction reactions). Radical pairs formed by the random encounter of freely diffusing radicals are referred to as uncorrelated or encounter (P) pairs. Once formed, the radical pairs can either collapse, to give combination or disproportionation products, or diffuse apart into free radicals (doublet states). The free radicals escaping may then either form new radical pairs with other radicals or react with some diamagnetic scavenger... [Pg.58]

Chain reactions do not continue indefinitely, but in the nature of the reactivity of the free radical or ionic centre they are likely to react readily in ways that will destroy the reactivity. For example, in radical polymerisations two growing molecules may combine to extinguish both radical centres with formation of a chemical bond. Alternatively they may react in a disproportionation reaction to generate end groups in two molecules, one of which is unsaturated. Lastly, active centres may find other molecules to react with, such as solvent or impurity, and in this way the active centre is destroyed and the polymer molecule ceases to grow. [Pg.24]

Polymerisation does not continue until all of the monomer is used up because the free radicals involved are so reactive that they find a variety of ways of losing their radical activity. The two methods of termination in radical polymerisations are combination and disproportionation. The first of these occurs when two radical species react together to form a single bond and one reaction product as in Reaction 2.5. [Pg.25]

That this mechanism can take place under suitable conditions has been demonstrated by isotopic labeling and by other means. However, the formation of disproportionation and dimerization products does not always mean that the free-radical abstraction process takes place. In some cases these products arise in a different manner.We have seen that the product of the reaction between a carbene and a molecule may have excess energy (p. 247). Therefore it is possible for the substrate and the carbene to react by mechanism 1 (the direct-insertion process) and for the excess energy to cause the compound thus formed to cleave to free radicals. When this pathway is in operation, the free radicals are formed after the actual insertion reaction. [Pg.790]

Since no relatively stable free radical is present (such as 26 in 14-17), most of the product arises from dimerization and disproportionation. The addition of a small amount of nitrobenzene increases the yield of arylation product because the nitrobenzene is converted to diphenyl nitroxide, which abstracts the hydrogen from 1 and reduces the extent of side reactions. ... [Pg.932]

For example, photolysis of a suspension of an arylthallium ditrifluoro-acetate in benzene results in the formation of unsymmetrical biphenyls in high yield (80-90%) and in a high state of purity 152). The results are in full agreement with a free radical pathway which, as suggested above, is initiated by a photochemically induced homolysis of the aryl carbon-thallium bond. Capture of the resulting aryl radical by benzene would lead to the observed unsymmetrical biphenyl, while spontaneous disproportionation of the initially formed Tl(II) species to thallium(I) trifluoroacetate and trifluoroacetoxy radicals, followed by reaction of the latter with aryl radicals, accounts for the very small amounts of aryl trifluoroacetates formed as by-products. This route to unsymmetrical biphenyls thus complements the well-known Wolf and Kharasch procedure involving photolysis of aromatic iodides 171). Since the most versatile route to the latter compounds involves again the intermediacy of arylthallium ditrifluoroacetates (treatment with aqueous potassium iodide) 91), these latter compounds now occupy a central role in controlled biphenyl synthesis. [Pg.171]


See other pages where Free radicals disproportionation reaction is mentioned: [Pg.43]    [Pg.43]    [Pg.325]    [Pg.138]    [Pg.325]    [Pg.530]    [Pg.325]    [Pg.1656]    [Pg.1053]    [Pg.219]    [Pg.374]    [Pg.13]    [Pg.104]    [Pg.999]    [Pg.504]    [Pg.740]    [Pg.401]    [Pg.281]    [Pg.112]    [Pg.740]    [Pg.13]    [Pg.98]    [Pg.139]    [Pg.289]    [Pg.171]   
See also in sourсe #XX -- [ Pg.81 ]




SEARCH



Disproportionate reactions

Disproportionation reaction

Free radical reaction

Free radicals disproportionation

Radical reactions disproportionation reaction

Radicals disproportionation

Radicals free-radical reactions

© 2024 chempedia.info