Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkylation, by free radicals

Figure 4c illustrates interfacial polymerisation encapsulation processes in which the reactant(s) that polymerise to form the capsule shell is transported exclusively from the continuous phase of the system to the dispersed phase—continuous phase interface where polymerisation occurs and a capsule shell is produced. This type of encapsulation process has been carried out at Hquid—Hquid and soHd—Hquid interfaces. An example of the Hquid—Hquid case is the spontaneous polymerisation reaction of cyanoacrylate monomers at the water—solvent interface formed by dispersing water in a continuous solvent phase (14). The poly(alkyl cyanoacrylate) produced by this spontaneous reaction encapsulates the dispersed water droplets. An example of the soHd—Hquid process is where a core material is dispersed in aqueous media that contains a water-immiscible surfactant along with a controUed amount of surfactant. A water-immiscible monomer that polymerises by free-radical polymerisation is added to the system and free-radical polymerisation localised at the core material—aqueous phase interface is initiated thereby generating a capsule sheU (15). [Pg.320]

Although primary and secondary alkyl hydroperoxides are attacked by free radicals, as in equations 8 and 9, such reactions are not chain scission reactions since the alkylperoxy radicals terminate by disproportionation without forming the new radicals needed to continue the chain (53). Overall decomposition rates are faster than the tme first-order rates if radical-induced decompositions are not suppressed. [Pg.103]

Polystyrene produced by free-radical polymerisation techniques is part syndio-tactic and part atactic in structure and therefore amorphous. In 1955 Natta and his co-workers reported the preparation of substantially isotactic polystyrene using aluminium alkyl-titanium halide catalyst complexes. Similar systems were also patented by Ziegler at about the same time. The use of n-butyl-lithium as a catalyst has been described. Whereas at room temperature atactic polymers are produced, polymerisation at -30°C leads to isotactic polymer, with a narrow molecular weight distribution. [Pg.454]

Bis(bromomethyl)-5//-dibenz[/), / ]azepines, e.g. 12, prepared by free-radical bromination of the 10,11-dimethyl compound with yV-bromosuccinimide, on treatment with a primary alkyl-amine followed by alkaline hydrolysis, yield l,2,3,8-tetrahydrodibenzo[. /]pyrrolo[3,4-<7]-azepines, e.g. 13, which possess useful pharmacological properties.91,163... [Pg.277]

Bedard et al. [7] studied quantitatively the initiation of the peroxidation of human low-density lipoproteins (LDL) with H00702 . In accord with the above findings the initiation rate increased when pH decreased from 7.6 to 6.5. It was suggested that initiation occurred via hydrogen atom abstraction by perhydroxyl radical from endogenous a-tocopherol, which in this process exhibited prooxidant and not antioxidant properties. Neutral, positively, and negatively charged alkyl peroxyl free radicals were the more efficient initiators of LDL peroxidation compared to superoxide. [Pg.774]

Semitelechelic HPMA polymers were synthesized by free radical polymerization of HPMA using 2,2 -azobis(isobutyronitrile) (AIBN) as the initiator and alkyl mercaptans as chain transfer agents. Alkyl mercaptans with different functional groups, namely, 2-mercaptoethylamine, 3-mercapto-propionic acid, 3-mercaptopropionic hydrazide, and methyl 3-mercapto-propionate, were used as the chain transfer agents ST HPMA polymers... [Pg.13]

It was discovered by Ziegler in Germany and Natta in Italy in the 1950s that metal alkyls were very efficient catalysts to promote ethylene polymerization at low pressures and low temperatures, where free-radical polymerization is very slow. They further found that the polymer they produced had fewer side chairrs because there were fewer growth mistakes caused by chain transfer and radical recombination. Therefore, this polymer was more crystalline and had a higher density than polymer prepared by free-radical processes. Thus were discovered linear and high-density polymers. [Pg.457]

Polyphenols can act as antioxidants by a number of potential pathways. The most important is likely to be by free radical scavenging, in which the polyphenol can break the radical chain reaction. Polyphenols are effective antioxidants in a wide range of chemical oxidation systems, being capable of scavenging peroxyl radicals, alkyl peroxyl radicals, superoxide, hydroxyl radicals, nitric oxide and peroxynitrate in aqueous and organic environments [121]. This activity is due to the ability of donating an H atom from an aromatic hydroxyl group to a free radical, and the major ability of an aromatic structure to support an unpaired electron by delocalization around the 7i-electron system. Phenolic acids... [Pg.293]

Direct oxidation of alkenes with molecular oxygen11,255,256 initiated by free radicals to yield epoxides occurs through addition of peroxy radicals to produce the more stable P-peroxy alkyl radicals (28) 257... [Pg.452]

Copolymerizations initiated by lithium metal should give the same product as produced from lithium alkyls. Usually the radical ends produced by electron transfer initiation have so short a lifetime they can have no influence on the copolymerization. This is true for instance in the copolymerization of isoprene and styrene (50). The product is identical if initiated by lithium metal or by butyllithium. With the styrene-methylmethacrylate system, however, differences are observed (79,80,82). Whereas the butyllithium initiated copolymer contains no styrene at low conversions, the one initiated by lithium metal has a high styrene content if the reaction is carried out in bulk and a moderate one even in tetrahydrofuran. These facts led O Driscoll and Tobolsky (80) to suggest that initiation with lithium occurs by electron exchange and that in this case the radical ends are sufficiently long-lived to produce simultaneous radical and anionic reactions at opposite ends of the chain. Only in certain rather exceptional circumstances would the free radical reaction be of importance. Some of the conditions required have been discussed by Tobolsky and Hartley (111). The anionic reaction should be slow. This is normally true for lithium based catalysts in hydrocarbon solvents. No evidence of appreciable radical participation is observed for initiation by sodium and potassium. The monomers should show a fast radical reaction. If styrene is replaced by isoprene, no isoprene is found in the copolymer for isoprene polymerizes slowly by free radical initiation. Most important of all, initiation should be slow to produce a low steady concentration of radical-anions. An initiator which produces an almost instantaneous and complete electron transfer to monomer produces a high radical concentration which will ensure their rapid mutual termination. [Pg.99]

The alkylating agent, 1-bromobutane, is prepared from 1-butene by free-radical (anti-Markovnikov) addition of hydrogen bromide. [Pg.223]

The desired alkyl bromide may be prepared by free-radical addition of hydrogen bromide to 2-methylpropene. [Pg.521]

The chlorination of alkyl aromatics by sulfuryl chloride promoted by free-radical initiators, which was originally discovered by Kharasch and Brown990, can be modified by incorporation of transition metal complexes. Matsumoto and coworkers have observed that, upon addition of Pd(PPh3)4, in place of a radical initiator, the side-chain monochlorination of toluene is substantially more selective991. Davis and his colleagues992 have extended this study and report that Pt(0) and Pd(0) are effective initiators for side-chain chlorination of toluene by sulfuryl chloride and dichlorine. Mn, Re, Mo and Fe complexes, on the other hand, behave more like Friedel-Crafts catalysts. Gas-phase chlorination of olefins to allyl chlorides is catalyzed by PdCl2 or by PtCl2993. [Pg.594]


See other pages where Alkylation, by free radicals is mentioned: [Pg.564]    [Pg.230]    [Pg.230]    [Pg.233]    [Pg.234]    [Pg.564]    [Pg.230]    [Pg.230]    [Pg.233]    [Pg.234]    [Pg.120]    [Pg.329]    [Pg.374]    [Pg.127]    [Pg.269]    [Pg.329]    [Pg.526]    [Pg.538]    [Pg.1129]    [Pg.895]    [Pg.697]    [Pg.271]    [Pg.247]    [Pg.920]    [Pg.36]    [Pg.273]    [Pg.921]    [Pg.441]    [Pg.455]    [Pg.805]    [Pg.772]    [Pg.336]   
See also in sourсe #XX -- [ Pg.152 , Pg.153 , Pg.154 , Pg.155 , Pg.156 , Pg.157 , Pg.158 , Pg.159 , Pg.160 , Pg.161 , Pg.162 ]

See also in sourсe #XX -- [ Pg.152 , Pg.153 , Pg.154 , Pg.155 , Pg.156 , Pg.157 , Pg.158 , Pg.159 , Pg.160 , Pg.161 , Pg.162 ]




SEARCH



Alkyl radicals

By Alkyl Radicals

By Alkylation

Free radical stabilization by alkyl groups

Free-radicals alkylation

Radical alkylation

© 2024 chempedia.info