Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Termination free radical polymerization

Propagation involves the consecutive additions of monomer molecules to the carbonium ion at the growing chain end. Termination in cationic polymerization usually involves rearrangement to produce a polymer with an unsaturated terminal unit and the original complex or chain transfer to a monomer and possibly to the polymer or solvent molecule. Unlike free-radical polymerization, termination by combination of two cationic polymer growing chains does not occur. [Pg.44]

Ionic polymerization follows a similar process for initiation and propagation of the reaction, where instead of a free radical the reactive unit on the end of a chain is either positively (cationic) or negatively (anionic) charged. Unlike free radical polymerization, termination occurs when the monomer is depleted. This type of polymerization is often used to produce block copolymers. [Pg.150]

Using the results for the moments from this approach, the PDI is computed in Equation 1.51. Because q is the probability of propagation compared to chain inactivation events, the value for q must be very close to 1 for a polymer of any appreciable length to be produced. This finding shows that the PDI for a steady-state free radical polymerization terminated exclusively by disproportionation should be 2. [Pg.13]

Polymerization reactions. There are two broad types of polymerization reactions, those which involve a termination step and those which do not. An example that involves a termination step is free-radical polymerization of an alkene molecule. The polymerization requires a free radical from an initiator compound such as a peroxide. The initiator breaks down to form a free radical (e.g., CH3 or OH), which attaches to a molecule of alkene and in so doing generates another free radical. Consider the polymerization of vinyl chloride from a free-radical initiator R. An initiation step first occurs ... [Pg.21]

The molecular weight distribution for a polymer like that described above is remarkably narrow compared to free-radical polymerization or even to ionic polymerization in which transfer or termination occurs. The sharpness arises from the nearly simultaneous initiation of all chains and the fact that all active centers grow as long as monomer is present. The following steps outline a quantitative treatment of this effect ... [Pg.407]

That the Poisson distribution results in a narrower distribution of molecular weights than is obtained with termination is shown by Fig. 6.11. Here N /N is plotted as a function of n for F= 50, for living polymers as given by Eq. (6.109). and for conventional free-radical polymerization as given by Eq. (6.77). This same point is made by considering the ratio M /M for the case of living polymers. This ratio may be shown to equal... [Pg.410]

The free-radical polymerization of methacrylic monomers follows a classical chain mechanism in which the chain-propagation step entails the head-to-taH growth of the polymeric free radical by attack on the double bond of the monomer. Chain termination can occur by either combination or disproportionation, depending on the conditions of the process (36). [Pg.263]

The minimum polydispersity index from a free-radical polymerization is 1.5 if termination is by combination, or 2.0 if chains ate terminated by disproportionation and/or transfer. Changes in concentrations and temperature during the reaction can lead to much greater polydispersities, however. These concepts of polymerization reaction engineering have been introduced in more detail elsewhere (6). [Pg.436]

Polymerization Processes. Free-radical polymerization is carried out in a variety of ways. One of the practical problems that must be dealt with is mnaway reactions which can result from auto acceleration, an increase in rate of polymerization caused by diffusion-limited termination (reduced... [Pg.436]

Additive Polyimides. Rhc ne-Poulenc s Kin el molding compound and Kerimid impregnating resin (115), Mitsubishi s BT Resins (116), and Toshiba s Imidaloy Resin (117) are based on bismaleimide (4) technology. Maleic anhydride reacts with a diamine to produce a diimide oligomer (7). Eurther reaction with additional diamine (Michael addition) yields polyaminohismaleimide prepolymer with terminal maleic anhydride double bonds. Cure is achieved by free-radical polymerization through the terminal double bonds. [Pg.276]

Polyethylene is the simplest of so-called high polymers. The reaction for low density polyethylene (LDPE) follows the classical free radical polymerization steps of initiator decomposition, initiation, propagation, and termination. The reaction is... [Pg.233]

Even within the small numbers of studies conducted to date, we are already seeing potentially dramatic effects. Free radical polymerization proceeds at a much faster rate and there is already evidence that both the rate of propagation and the rate of termination are effected. Whole polymerization types - such as ring-opening polymerization to esters and amides, and condensation polymerization of any type (polyamides, polyesters, for example) - have yet to be attempted in ionic liquids. This field is in its infancy and we look forward to the coming years with great anticipation. [Pg.333]

An emulsion polymerization reaction follows three conventional steps, namely, initiation, propagation, and termination. These steps can be described by the conventional reactions that are valid for any free radical polymerization. Smith and Ewart [10] proposed that a forming latex particle in an ideal emulsion polymeriza-... [Pg.192]

Photoinitiation is an excellent method for studying the pre- and posteffects of free radical polymerization, and from the ratio of the specific rate constant (kx) in non-steady-state conditions, together with steady-state kinetics, the absolute values of propagation (kp) and termination (k,) rate constants for radical polymerization can be obtained. [Pg.244]

The block copolymer produced by Bamford s metal carbonyl/halide-terminated polymers photoinitiating systems are, therefore, more versatile than those based on anionic polymerization, since a wide range of monomers may be incorporated into the block. Although the mean block length is controllable through the parameters that normally determine the mean kinetic chain length in a free radical polymerization, the molecular weight distributions are, of course, much broader than with ionic polymerization and the polymers are, therefore, less well defined,... [Pg.254]

Brosse, J.-C., Derouet, D., Epaillard, F., Soutif, J.-C., Legeay, G. and Dusek, K. Hydroxyl-Terminated Polymers Obtained by Free Radical Polymerization. Synthesis, Characterization, and Applications. Vol. 81, pp. 167—224. [Pg.150]

In the period 1910-1950 many contributed to the development of free-radical polymerization.1 The basic mechanism as we know it today (Scheme 1.1), was laid out in the 1940s and 50s.7 9 The essential features of this mechanism are initiation and propagation steps, which involve radicals adding to the less substituted end of the double bond ("tail addition"), and a termination step, which involves disproportionation or combination between two growing chains. [Pg.2]

Bhawe (14) has simulated the periodic operation of a photo-chemically induced free-radical polymerization which has both monomer and solvent transfer steps and a recombination termination reaction. An increase of 50% in the value of Dp was observed over and above the expected value of 2.0. An interesting feature of this work is that when very short period oscillations were employed, virtually time-invariant products were predicted. [Pg.256]

The most comprehensive simulation of a free radical polymerization process in a CSTR is that of Konopnicki and Kuester (15). For a mechanism which includes transfer to both monomer and solvent as well as termination by combination and disproportionation they examined the influence of non-isothermal operation, viscosity effects as well as induced sinuoidal and square-wave forcing functions on initiator feed and jacket temperature on the MWD of the polymer produced. [Pg.256]

The polymerization rate equations are based on a classical free radical polymerization mechanism (i.e., initiation, propagation, and termination of the polymer chains). [Pg.340]

It can be seen from equation (2) that when y 0 the model falls into the classical expression for the rate of conversion of free radical polymerization. Equation (la) shows that this will be the case whenever all macroradicals have the same high mobility (i.e., as n tends to infinity) or when both entangled and non-entangled radicals have the same termination rate constant (i.e. a is equal to unity). [Pg.362]

Free radical polymerization does not go on indefinitely, because sometimes two free radicals collide and react. This destroys two free radicais and terminates the chain. For example, another initiator fragment can react with the... [Pg.899]

Such a mechanism is open to serious objections both on theoretical and experimental grounds. Cationic polymerizations usually are conducted in media of low dielectric constant in which the indicated separation of charge, and its subsequent increase as monomer adds to the chain, would require a considerable energy. Moreover, termination of chains growing in this manner would be a second-order process involving two independent centers such as occurs in free radical polymerizations. Experimental evidence indicates a termination process of lower order (see below). Finally, it appears doubtful that a halide catalyst is effective without a co-catalyst such as water, alcohol, or acetic acid. This is quite definitely true for isobutylene, and it may hold also for other monomers as well. [Pg.219]

Free radical polymerization Relatively insensitive to trace impurities Reactions can occur in aqueous media Can use chain transfer to solvent to modify polymerization process Structural irregularities are introduced during initiation and termination steps Chain transfer reactions lead to reduced molecular weight and branching Limited control of tacticity High pressures often required... [Pg.42]

Figure 2,3 Chain growth polymerization exemplified by free radical polymerization of polyethylene a) initiation, b) propagation, c) chain transfer, and d) termination... Figure 2,3 Chain growth polymerization exemplified by free radical polymerization of polyethylene a) initiation, b) propagation, c) chain transfer, and d) termination...

See other pages where Termination free radical polymerization is mentioned: [Pg.316]    [Pg.359]    [Pg.365]    [Pg.513]    [Pg.517]    [Pg.519]    [Pg.325]    [Pg.330]    [Pg.191]    [Pg.740]    [Pg.488]    [Pg.25]    [Pg.482]    [Pg.416]    [Pg.109]    [Pg.110]    [Pg.220]    [Pg.222]    [Pg.319]    [Pg.170]    [Pg.80]    [Pg.41]    [Pg.331]    [Pg.42]   
See also in sourсe #XX -- [ Pg.578 ]

See also in sourсe #XX -- [ Pg.2 ]




SEARCH



Activation Energies of Propagation and Termination in Free Radical Polymerization

Chain termination in free radical polymerization

Free radical addition polymerization termination

Free radical polymerization chain length dependent termination

Free radical polymerization chain termination

Free radical polymerization propagation, Chain termination

Free radical polymerization termination phase

Free radical termination

Polymerization free radical

Polymerization terminator)

Radical polymerization termination

Radical termination

Radicals terminators

Terminal 1,4-polymerization

Termination Studies of Free-Radical Polymerizations

Termination in free-radical polymerization

Termination rate constants free radical polymerizations

Termination reaction in free-radical polymerization

Termination reactions free radical polymerizations

© 2024 chempedia.info