Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fourier transform normalization

Whatever the excitation, the transformation of the response from the frequency to the time domain (Fig. 11.21) is done with the inverse Fourier transform, normally as the FFT (fast Fourier transform) algorithm, just as for spectra of electromagnetic radiation. Remembering that the Fourier transform is a special case of the Laplace transform with... [Pg.249]

Figure 3.22. (q) Time-domain free-ion decay signal and (b) Fourier-transformed normal mass spectrum. (Reproduced from ref. 61 by permission of WUey-Interscience, cop3right 1996.)... [Pg.97]

In fig. 2 an ideal profile across a pipe is simulated. The unsharpness of the exposure rounds the edges. To detect these edges normally a differentiation is used. Edges are extrema in the second derivative. But a twofold numerical differentiation reduces the signal to noise ratio (SNR) of experimental data considerably. To avoid this a special filter procedure is used as known from Computerised Tomography (CT) /4/. This filter based on Fast Fourier transforms (1 dimensional FFT s) calculates a function like a second derivative based on the first derivative of the profile P (r) ... [Pg.519]

QCMB RAM SBR SEI SEM SERS SFL SHE SLI SNIFTIRS quartz crystal microbalance rechargeable alkaline manganese dioxide-zinc styrene-butadiene rubber solid electrolyte interphase scanning electron microscopy surface enhanced Raman spectroscopy sulfolane-based electrolyte standard hydrogen electrode starter-light-ignition subtractively normalized interfacial Fourier transform infrared... [Pg.604]

The qualitative difference between low-density and high-density rotational relaxation is clearly reflected in the Fourier transform of the normalized angular momentum correlation function ... [Pg.35]

If the second term on the right-hand side of the equation is omitted, the latter is transformed into Eq. (2.76). As the omission is possible only for t < tj, Fourier transformation of the reduced equation holds for co-tj 1 only. Consequently, the equality (2.75) is of asymptotic character, and may not be utilized to find full g(co) or its Fourier-transform Kj(t) at any times. When it was nevertheless used in [117], the rotational correlation function turned out to be alternating in sign. The oscillatory behaviour of Kj(t) occured not only in a compressed gas, but also at normal pressure, when Kj(t) should vanish monotonically, if not exponentially. The origin of these non-physical oscillations is easily... [Pg.84]

The first Raman and infrared studies on orthorhombic sulfur date back to the 1930s. The older literature has been reviewed before [78, 92-94]. Only after the normal coordinate treatment of the Sg molecule by Scott et al. [78] was it possible to improve the earlier assignments, especially of the lattice vibrations and crystal components of the intramolecular vibrations. In addition, two technical achievements stimulated the efforts in vibrational spectroscopy since late 1960s the invention of the laser as an intense monochromatic light source for Raman spectroscopy and the development of Fourier transform interferometry in infrared spectroscopy. Both techniques allowed to record vibrational spectra of higher resolution and to detect bands of lower intensity. [Pg.47]

Single-quantum coherence is the type of magnedzadon that induces a voltage in a receiver coil (i.e., Rf signal) when oriented in the xy-plane. This signal is observable, since it can be amplified and Fourier-transformed into a frequency-domain signal. Zero- or multiple-quantum coherences do not obey the normal selection rules and do not... [Pg.134]

Fourier transformation in (Fti), spectra are obtained with real (R) and imaginary (/) data points. For detection in the quadrature mode with simultaneous sampling, a complex Fourier transformation is performed, with a phase correction being applied in F. (c) A normal phase-sensitive transform P— RR and I- RI. (d) Complex FT is applied to pairs of columns, which produces four quadrants, of which only the RR quadrant is plotted. [Pg.163]

Figure 3.6 The first set of Fourier transformations across <2 yields signals in V2, with absorption and dispersion compronents corresponding to real and imaginary parts. The second FT across /, yields signals in V, with absorption (i.e., real) and dispersion (i.e., imaginary) components quadrants (a), (b), (c), and (d) represent four different combinations of real and imaginary components and four different line shapes. These line shaptes normally are visible in phase-sensitive 2D plots. Figure 3.6 The first set of Fourier transformations across <2 yields signals in V2, with absorption and dispersion compronents corresponding to real and imaginary parts. The second FT across /, yields signals in V, with absorption (i.e., real) and dispersion (i.e., imaginary) components quadrants (a), (b), (c), and (d) represent four different combinations of real and imaginary components and four different line shapes. These line shaptes normally are visible in phase-sensitive 2D plots.
In 2D NMR experiments, the FIDs are relatively short and with fewer data points, so dc correction is more difficult to carry out accurately. Phase cycling procedures are recommended whenever required to remove dc offsets before dc correction, which is carried out before the first (F2) Fourier transform. Since the data points in the transform arise from frequency-domain spectra, no dc correction is normally required (we expect to see unchanging dc components at Fi = 0). [Pg.165]

The potential energy surface [47] for this reaction (Fig. 5) shows many potentially competitive pathways, labeled A-F, leading to the two most exothermic product channels. Many of these pathways can be isotopically separated by reaction of 02 with HCCO in normal abundance, as diagramed in Fig. 5. Zou and Osbom used time-resolved Fourier transform emission spectroscopy to detect the CO and CO2 products of this reaction [47]. Rotationally resolved infrared (IR) spectroscopy can easily identify all the possible isotopologs. For example. Fig. 6 shows a single... [Pg.234]

Figure 2. Normalized EXAFS data (copper K absorption edge) at 100°K, with associated Fourier transforms and inverse transforms, for silica supported copper and ruthenium-copper catalysts. Reproduced with permission from Ref. 8. Copyright 1980, American Institute of Physics. Figure 2. Normalized EXAFS data (copper K absorption edge) at 100°K, with associated Fourier transforms and inverse transforms, for silica supported copper and ruthenium-copper catalysts. Reproduced with permission from Ref. 8. Copyright 1980, American Institute of Physics.
It is only since 1980 that in situ spectroscopic techniques have been developed to obtain identification of the adsorbed intermediates and hence of reliable reaction mechanisms. These new infrared spectroscopic in situ techniques, such as electrochemically modulated infrared reflectance spectroscopy (EMIRS), which uses a dispersive spectrometer, Fourier transform infrared reflectance spectroscopy, or a subtractively normalized interfacial Fourier transform infrared reflectance spectroscopy (SNIFTIRS), have provided definitive proof for the presence of strongly adsorbed species (mainly adsorbed carbon monoxide) acting as catalytic poisons. " " Even though this chapter is not devoted to the description of in situ infrared techniques, it is useful to briefly note the advantages and limitations of such spectroscopic methods. [Pg.76]

Figure 6.18 Subtractively normalized interfacial Fourier transform infrared spectroscopy (SNIFTIRS) spectra of a polished polyciystaUine Pt electrode, immersed in 0.1 M HCIO4, + 5 M CH3OH electrolyte. All spectra were normahzed to the base spectrum collected at 0 mV vs. RHE. (Reproduced from Iwasita and Vielstich [1988].)... Figure 6.18 Subtractively normalized interfacial Fourier transform infrared spectroscopy (SNIFTIRS) spectra of a polished polyciystaUine Pt electrode, immersed in 0.1 M HCIO4, + 5 M CH3OH electrolyte. All spectra were normahzed to the base spectrum collected at 0 mV vs. RHE. (Reproduced from Iwasita and Vielstich [1988].)...
There are many specific ways to generate equally spaced tags but they are all based on the same principle of manipulating the rf pulses to generate equally spaced bands of rf radiation in the frequency domain. It is well known that under ordinary conditions, meaning normal levels of nuclear spin excitation, the frequency spectrum of the rf excitation pulse(s) is approximately the Fourier transform of the pulses in the time domain. Thus, a single slice can be generated in the... [Pg.496]


See other pages where Fourier transform normalization is mentioned: [Pg.150]    [Pg.255]    [Pg.781]    [Pg.150]    [Pg.255]    [Pg.781]    [Pg.142]    [Pg.16]    [Pg.95]    [Pg.378]    [Pg.281]    [Pg.673]    [Pg.248]    [Pg.724]    [Pg.276]    [Pg.745]    [Pg.481]    [Pg.30]    [Pg.203]    [Pg.249]    [Pg.33]    [Pg.152]    [Pg.204]    [Pg.551]    [Pg.128]    [Pg.139]    [Pg.149]    [Pg.505]    [Pg.355]    [Pg.41]    [Pg.185]    [Pg.109]    [Pg.15]    [Pg.92]    [Pg.410]    [Pg.337]    [Pg.29]   
See also in sourсe #XX -- [ Pg.39 , Pg.65 ]




SEARCH



Normal transformation

Normality transformations

© 2024 chempedia.info