Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fourier transform infrared surface

Polarization Fourier transform infrared surface spectroscopy makes use of light beams polarized in two mutually perpendicular directions (Fig. 3.2), surface-parallel (s-polarization) and surface-normal (p-polarization). [Pg.58]

Several so-called hyphenated techniques have been developed, where the developed TLC plate is transferred to a modified spectrometer to record in situ the Fourier transform infrared, surface enhanced Raman, or mass spectra of the separated zones. This way more detailed structural information can be obtained to complement the data from densitometric evaluation. A true hyphenation is the direct application of the eluate from a microbore HPLC column onto an HPTLC plate, which is then developed by AMD. [Pg.4802]

Transmission Fourier Transform Infrared Spectroscopy. The most straightforward method for the acquisition of in spectra of surface layers is standard transmission spectroscopy (35,36). This approach can only be used for samples which are partially in transparent or which can be diluted with an in transparent medium such as KBr and pressed into a transmissive pellet. The extent to which the in spectral region (typically ca 600 4000 cm ) is available for study depends on the in absorption characteristics of the soHd support material. Transmission ftir spectroscopy is most often used to study surface species on metal oxides. These soHds leave reasonably large spectral windows within which the spectral behavior of the surface species can be viewed. [Pg.285]

Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy. Attenuated total redectance (atr) ftir spectroscopy is based on the principle of total internal redection (40). Methods based on internal redection in the uv and visible regions of the spectmm are also common in addition to those in the ir region. The implementation of internal redection in the ir region of the spectmm provides a means of obtaining ir spectra of surfaces or interfaces, thus providing moleculady-specific vibrational information. [Pg.286]

Infrared spectroscopy, including Fourier-transform infrared (FTIR) spectroscopy, is one of the oldest techniques used for surface analysis. ATR has been used for many years to probe the surface composition of polymers that have been surface-modified by an etching process or by deposition of a film. RAIR has been widely used to characterize thin films on the surfaces of specular reflecting substrates. FTIR has numerous characteristics that make it an appropriate technique for... [Pg.243]

QCMB RAM SBR SEI SEM SERS SFL SHE SLI SNIFTIRS quartz crystal microbalance rechargeable alkaline manganese dioxide-zinc styrene-butadiene rubber solid electrolyte interphase scanning electron microscopy surface enhanced Raman spectroscopy sulfolane-based electrolyte standard hydrogen electrode starter-light-ignition subtractively normalized interfacial Fourier transform infrared... [Pg.604]

Infrared spectroelectrochemical methods, particularly those based on Fourier transform infrared (FTIR) spectroscopy can provide structural information that UV-visible absorbance techniques do not. FTIR spectroelectrochemistry has thus been fruitful in the characterization of reactions occurring on electrode surfaces. The technique requires very thin cells to overcome solvent absorption problems. [Pg.44]

In situ Fourier transform infrared and in situ infrared reflection spectroscopies have been used to study the electrical double layer structure and adsorption of various species at low-index single-crystal faces of Au, Pt, and other electrodes.206"210 It has been shown that if the ions in the solution have vibrational bands, it is possible to relate their excess density to the experimentally observed surface. [Pg.41]

Surface forces measurement is a unique tool for surface characterization. It can directly monitor the distance (D) dependence of surface properties, which is difficult to obtain by other techniques. One of the simplest examples is the case of the electric double-layer force. The repulsion observed between charged surfaces describes the counterion distribution in the vicinity of surfaces and is known as the electric double-layer force (repulsion). In a similar manner, we should be able to study various, more complex surface phenomena and obtain new insight into them. Indeed, based on observation by surface forces measurement and Fourier transform infrared (FTIR) spectroscopy, we have found the formation of a novel molecular architecture, an alcohol macrocluster, at the solid-liquid interface. [Pg.3]

Recent work in our laboratory has shown that Fourier Transform Infrared Reflection Absorption Spectroscopy (FT-IRRAS) can be used routinely to measure vibrational spectra of a monolayer on a low area metal surface. To achieve sensitivity and resolution, a pseudo-double beam, polarization modulation technique was integrated into the FT-IR experiment. We have shown applicability of FT-IRRAS to spectral measurements of surface adsorbates in the presence of a surrounding infrared absorbing gas or liquid as well as measurements in the UHV. We now show progress toward situ measurement of thermal and hydration induced conformational changes of adsorbate structure. The design of the cell and some preliminary measurements will be discussed. [Pg.435]

Reaction products can also be identified by in situ infrared reflectance spectroscopy (Fourier transform infrared reflectance spectroscopy, FTIRS) used as single potential alteration infrared reflectance spectroscopy (SPAIRS). This method is suitable not only for obtaining information on adsorbed products (see below), but also for observing infrared (IR) absorption bands due to the products immediately after their formation in the vicinity of the electrode surface. It is thus easy to follow the production of CO2 versus the oxidation potential and to compare the behavior of different electrocatalysts. [Pg.76]

At present, most workers hold a more realistic view of the promises and difficulties of work in electrocatalysis. Starting in the 1980s, new lines of research into the state of catalyst surfaces and into the adsorption of reactants and foreign species on these surfaces have been developed. Techniques have been developed that can be used for studies at the atomic and molecular level. These techniques include the tunneling microscope, versions of Fourier transform infrared spectroscopy and of photoelectron spectroscopy, differential electrochemical mass spectroscopy, and others. The broad application of these techniques has considerably improved our understanding of the mechanism of catalytic effects in electrochemical reactions. [Pg.553]

There are several other techniques Uke the fluorescent dye displacement assays, footprinting, Fourier transform infrared spectroscopy. X-ray crystallography, electron microscopy, confocal microscopy, atomic force microscopy, surface plasmon resonance etc used for hgand-DNA interactions that are not discussed here. [Pg.173]

Surface carbonites, carbonates, inorganic carboxylates and sometimes formates (specially at low temperature) were identified by Fourier transform infrared (FUR) [30,31], Step 3 Oxygen diffusion from the bulk sites to the surface... [Pg.237]

These assumptions are partially different from those introduced in our previous model.10 In that work, in fact, in order to simplify the kinetic description, we assumed that all the steps involved in the formation of both the chain growth monomer CH2 and water (i.e., Equations 16.3 and 16.4a to 16.4e) were a series of irreversible and consecutive steps. Under this assumption, it was possible to describe the rate of the overall CO conversion process by means of a single rate equation. Nevertheless, from a physical point of view, this hypothesis implies that the surface concentration of the molecular adsorbed CO is nil, with the rate of formation of this species equal to the rate of consumption. However, recent in situ Fourier transform infrared (FT-IR) studies carried out on the same catalyst adopted in this work, at the typical reaction temperature and in an atmosphere composed by H2 and CO, revealed the presence of a significant amount of molecular CO adsorbed on the catalysts surface.17 For these reasons, in the present work, the hypothesis of the irreversible molecular CO adsorption has been removed. [Pg.308]

Arachidic acid monolayers were prepared from a benzene solution on the water subphase of pH5.8(pure water) and 12.6(adjusted by addition of NaOH) at Tsp of 303 K below Tm(=328 K) of the monolayer [31]. The ionic dissociation state of hydrophilic group was estimated on the basis of the stretching vibrations of carbonyl and carboxylate groups by Fourier transform-infrared attenuated total reflection, FT-IR ATR measurements. 70 arachidic acid monolayers were transferred on germanium ATR prism, resulting in the formation of the multi-layered film. Transfer on the prism was carried out at surface pressures of 25 or 28 mN-nr1. Infrared absorption measurements revealed that almost carboxylic groups of arachidic acid molecules did not dissociate on the water subphase of pH5.8, whereas all carboxylic groups dissociated as carboxylate ions on the water subphase of pH 12.6. [Pg.26]

In Situ Surface Fourier Transform Infrared Study of Adsorption of Isoquinoline at a Mercury Electrode... [Pg.338]


See other pages where Fourier transform infrared surface is mentioned: [Pg.330]    [Pg.330]    [Pg.297]    [Pg.541]    [Pg.224]    [Pg.555]    [Pg.412]    [Pg.353]    [Pg.341]    [Pg.30]    [Pg.85]    [Pg.236]    [Pg.436]    [Pg.551]    [Pg.469]    [Pg.169]    [Pg.280]    [Pg.355]    [Pg.480]    [Pg.118]    [Pg.181]    [Pg.134]    [Pg.534]    [Pg.218]    [Pg.95]    [Pg.170]    [Pg.75]    [Pg.96]    [Pg.575]    [Pg.16]    [Pg.124]    [Pg.305]    [Pg.323]   
See also in sourсe #XX -- [ Pg.140 ]




SEARCH



Fourier transform infrared

Fourier transform infrared spectra of the textile surfaces

Fourier transform infrared spectroscopy protein-surface studies

Fourier transform infrared spectroscopy surface

Surface analysis methods Fourier transform infrared

© 2024 chempedia.info