Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fourier-transform infrared degradation

Fourier transform infrared (FTIR) spectroscopy, 13C nuclear magnetic resonance (NMR) spectroscopy, ultraviolet-visible (UV-VIS) and fluorescence spectroscopy can be integrated with chromatographic techniques especially in the study of ageing and degradation of terpenic materials. They can be used to study the transformation, depletion or formation of specific functional groups in the course of ageing. [Pg.218]

The ability of the new precursors to decompose thermally to yield singlephase CIS was investigated by powder XRD analysis and EDS on the nonvolatile solids from the TGA experiments of selected compounds. Furthermore, using TGA-evolved gas analysis (EGA), the volatile components from the degradation of the SSPs could be analyzed via real-time fourier transform infrared (FTIR) and mass spectrometry (MS), thus providing information for the decomposition mechanism.3 The real-time FTIR spectrum for 7 and 8 shows absorptions at approximately 3000,1460,1390,1300, and 1250 cm-1 (see Fig. 6.7). [Pg.166]

Fourier transform Infrared spectroscopy has been shown to be an excellent tool for surface and Interface studies (.2), In this paper, the application of reflection/absorption Fourier transform Infrared spectroscopy (FTIR-RA) for studying the degradation of amine-cured epoxy and polybutadiene coatings on cold-rolled steel after exposure to a warm, humid environment is reported. [Pg.101]

Coleman, M. M., Sivy, G. T. Fourier Transform Infrared Studies of the Degration of Polyacrylonitrile) Copolymers I. Introduction and Comparative Rates of the Degradation of Three Copolymers Below 200 °C and Under Reduced Pressure. Preprint submitted to CARBON... [Pg.152]

Regarding the spatial aspects of the enzymatic degradation of CA-g-PLLA, a surface characterization [30] was carried out for melt-molded films by atomic force microscopy (AFM) and attenuated total-reflection Fourier-transform infrared spectroscopy (ATR-FTIR) before and after the hydrolysis test with proteinase K. As exemplified in Fig. 3 for a copolymer of MS = 22, the AFM study showed that hydrolysis for a few weeks caused a transformation of the original smooth surface of the test specimen (Fig. 3a) into a more undulated surface with a number of protuberances of 50-300 nm in height and less than a few micrometers in width (Fig. 3b). The ATR-FTIR measurements proved a selective release of lactyl units in the surface region of the hydrolyzed films, and the absorption intensity data monitored as a function of time was explicable in accordance with the AFM result. [Pg.106]

Fourier transform infrared spectroscopy FT-IR. The measurement of individual degradation products with FT-IR is very simple, quick and precise. A reference sample spectrum of new oil is required to subtract electronically from the oil sample spectrum. The spectra of the fresh oil and the used oil sample are obtained individually in the same cell. The results - both spectra and the "differential" spectrum are stored in the computer in absorbance format, a form that varies linearly with concentration. [Pg.232]

Diffuse Reflectance, Attenuated Total Reflection or Multiple Internal Reflection, Photoacoustic (PAS), Photothemal Beam Deflection, Specular Reflection Absorption, and forensic applications with the diamond cell and the Fourier transform infrared (FTIR) microscope. In museum laboratories, FTIR applications have been used for problems of identification and degradation in art and archeology. (14)... [Pg.240]

The major peculiarities for a diagenetically altered bone are an increase in crystal size and a decrease in protein content [104], thus complementary information on the state of degradation can be obtained by FT-IR (Fourier transform infrared spectroscopy). The characteristic splitting of the double peak at 563-604 cm-1 corresponds to the phosphate vibrations v4 (P04)3- indicating mineral-phase modifications, e.g. changes in crystallinity. A low value for the splitting factor SF indicates a high amount of amorphous material in the mineral phase and was obtained as described in Ref. [105],... [Pg.235]

Holland, B. J. and Hay, J. N. The kinetics and mechanisms of the thermal degradation of poly(methyl methacrylate) studied by thermal analysis-Fourier transform infrared spectroscopy. Polymer 2001 42 4825. [Pg.507]

Usami, T., Itih, T., Ohtani, H., Tsuge, S. (1990) Structural study of polyacrylonitrile libers during oxidative thermal degradation by pyrolysis-gas chromatography, solid state 13C Nuclear magnetic resonance and Fourier transform infrared spectroscopy, Macromolecules 23, 2460-2465. [Pg.585]

In this section we discuss a method of controlled material degradation for individual organic semiconductors and also for the blends used in bulk heterojunction solar cells [37]. The degradation is studied using attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and by determining current/voltage characteristics (I/V measurements) of the devices. [Pg.237]

Comparison of several techniques (namely Fourier transform infrared spectroscopy (FTIR), simultaneous thermogravimetric analysis-differential scanning calorimetry (TGA-DSC) and ultrasonic spectroscopy) for assessing the residual physical and mechanical characteristics of polymer matrix composites (PMCs) exposed to excessive thermal loads showed the measured power spectra of ultrasonic energy to correlate with performance of graphite fibre epoxy matrix composites exposed to thermal degradation, and also that analyses with the three techniques all pointed to the same critical temperature at which thermally induced damage increased sharply [58],... [Pg.365]

Fourier transform infrared (FTIR) spectroscopy and Raman spectroscopy have also been used to authenticate polyanhydride structures. Aliphatic polymers absorb at 1740 and 1810 cm while aromatic polymers absorb at 1720 and 1780 cm All the polyanhydrides show methylene bands because of deformation, stretching, rocking, and twisting. Aside from being used to ascertain polyanhydride structures, these techniques can be used to determine degradation progress, by monitoring the area of carboxylic acid peak (1770-1675 cm ) with respect to the characteristic anhydride peaks over time. [Pg.2251]


See other pages where Fourier-transform infrared degradation is mentioned: [Pg.140]    [Pg.148]    [Pg.387]    [Pg.107]    [Pg.48]    [Pg.213]    [Pg.797]    [Pg.67]    [Pg.383]    [Pg.107]    [Pg.490]    [Pg.101]    [Pg.78]    [Pg.118]    [Pg.456]    [Pg.95]    [Pg.148]    [Pg.260]    [Pg.131]    [Pg.168]    [Pg.510]    [Pg.98]    [Pg.105]    [Pg.198]    [Pg.292]    [Pg.106]    [Pg.278]    [Pg.275]    [Pg.114]    [Pg.3938]    [Pg.1830]    [Pg.11]    [Pg.73]    [Pg.2103]    [Pg.143]   
See also in sourсe #XX -- [ Pg.317 , Pg.318 ]




SEARCH



Degradative transformation

Fourier transform infrared

© 2024 chempedia.info