Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fouling temperature

Electrodialysis Fouling Temperatur e stability Cost Selectivity Reliability Process reliability and selectivity are adequate for current uses. Improvements could lead to cost reduction, especially in newer applications... [Pg.5]

Reboiler temperature increases with a limit often set by thermal decomposition of the material being vaporized, causing excessive fouling. [Pg.76]

The major portion of sait is found in residues as these streams serve as the bases for fuels, or as feeds for asphalt and petroleum coke production, the presence of salt in these products causes fouling of burners, the alteration of asphalt emulsions, and the deterioration of coke quality. Furthermore, calcium and magnesium chlorides begin to hydrolyze at 120°C. This hydrolysis occurs rapidly as the temperature increases (Figure 8.1) according to the reaction i. ... [Pg.329]

Arsenic (but not antimony) forms a second hydride. This is extremely unstable, decomposing at very low temperatures. Replacement of the hydrogen atoms by methyl groups gives the more stable substance tetramethyldiarsane, cacodyl, (CH3)2As -AsfCHj), a truly foul-smelhng liquid. [Pg.227]

Emulsion Process. The emulsion polymerization process utilizes water as a continuous phase with the reactants suspended as microscopic particles. This low viscosity system allows facile mixing and heat transfer for control purposes. An emulsifier is generally employed to stabilize the water insoluble monomers and other reactants, and to prevent reactor fouling. With SAN the system is composed of water, monomers, chain-transfer agents for molecular weight control, emulsifiers, and initiators. Both batch and semibatch processes are employed. Copolymerization is normally carried out at 60 to 100°C to conversions of - 97%. Lower temperature polymerization can be achieved with redox-initiator systems (51). [Pg.193]

A, 5A, and 13X zeoHtes are the predorninant adsorbents for CO2 removal by temperature-swing processes. The air fed to an air separation plant must be H2O- and C02-ftee to prevent fouling of heat exchangers at cryogenic temperatures 13X is typically used here. Another appHcation for 4A-type zeoHte is for CO2 removal from baseload and peak-shaving natural gas Hquefaction faciHties. [Pg.280]

Gun Propellents. Although the stresses on individual gun propellant grains are less severe because of the small size, these propellants must withstand much higher weapon pressures and accelerations. Formulation options are usually more limited for gun propellants than for rocket propellants because the products of combustion must not foul or corrode a gun, should have a low flame temperature, and should exhibit minimum flash and smoke characteristics. Gun propellants are examined microscopically for porosity, are tested for mechanical characteristics, and fired in closed bombs to determine the burning characteristics. [Pg.34]

Direct Contact Heat Exchangers. In a direct contact exchanger, two fluid streams come into direct contact, exchange heat and maybe also mass, and then separate. Very high heat-transfer rates, practically no fouling, lower capital costs, and lower approach temperatures are the principal advantages. [Pg.495]

The rate of heat-transfer q through the jacket or cod heat-transfer areaM is estimated from log mean temperature difference AT by = UAAT The overall heat-transfer coefficient U depends on thermal conductivity of metal, fouling factors, and heat-transfer coefficients on service and process sides. The process side heat-transfer coefficient depends on the mixing system design (17) and can be calculated from the correlations for turbines in Figure 35a. [Pg.438]

In plasticizer manufacture, eg, of phthalates or sebacates, uskig sulfuric or/ -toluenesulfonic acid catalysts, the temperature (140—150°C) requked for rapid reaction and high conversion may dehydrate or oxidize the alcohol and may yield a dark or foul-smelling product. Neutral titanates do not cause such side reactions. Although a temperature of 200°C is requked, esterifications can easily be forced to over 99% conversion without the formation of odors or... [Pg.161]

Flux response to concentration, cross flow or shear rate, pressure, and temperature should be determined for the allowable plant excursions. Fouling must be quantified and cleaning procedures proven. The final design flux should reflect long-range variables such as feed-composition changes, reduction of membrane performance, long-term compaction, new foulants, and viscosity shifts. [Pg.298]

The formation of anodic and cathodic sites, necessary to produce corrosion, can occur for any of a number of reasons impurities in the metal, localized stresses, metal grain size or composition differences, discontinuities on the surface, and differences in the local environment (eg, temperature, oxygen, or salt concentration). When these local differences are not large and the anodic and cathodic sites can shift from place to place on the metal surface, corrosion is uniform. With uniform corrosion, fouling is usually a more serious problem than equipment failure. [Pg.266]

Butadiene is also known to form mbbery polymers caused by polymerization initiators like free radicals or oxygen. Addition of antioxidants like TBC and the use of lower storage temperatures can substantially reduce fouling caused by these polymers. Butadiene and other olefins, such as isoprene, styrene, and chloroprene, also form so-called popcorn polymers (250). These popcorn polymers are hard, opaque, and porous. They have been reported to... [Pg.348]

The normal regeneration temperature for siUca gel is 175°C. In hydrocarbon service, higher temperatures (225—275°C) are recommended to desorb heavy hydrocarbons, which tend to foul the adsorbent during prolonged use (see Silicon compounds). [Pg.513]


See other pages where Fouling temperature is mentioned: [Pg.468]    [Pg.28]    [Pg.3860]    [Pg.24]    [Pg.468]    [Pg.28]    [Pg.3860]    [Pg.24]    [Pg.87]    [Pg.88]    [Pg.300]    [Pg.417]    [Pg.341]    [Pg.180]    [Pg.180]    [Pg.502]    [Pg.502]    [Pg.503]    [Pg.504]    [Pg.505]    [Pg.385]    [Pg.155]    [Pg.256]    [Pg.436]    [Pg.456]    [Pg.97]    [Pg.238]    [Pg.49]    [Pg.512]    [Pg.148]    [Pg.156]    [Pg.417]    [Pg.468]    [Pg.309]    [Pg.512]    [Pg.151]    [Pg.520]    [Pg.230]    [Pg.436]    [Pg.438]   
See also in sourсe #XX -- [ Pg.197 , Pg.198 ]




SEARCH



Fouling temperature effect

© 2024 chempedia.info