Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Formation negative electrodes

Coin and Button Cell Commercial Systems. Initial commercialization of rechargeable lithium technology has been through the introduction of coin or button cells. The eadiest of these systems was the Li—C system commercialized by Matsushita Electric Industries (MEI) in 1985 (26,27). The negative electrode consists of a lithium alloy and the positive electrode consists of activated carbon [7440-44-0J, carbon black, and binder. The discharge curve is not flat, but rather slopes from about 3 V to 1.5 V in a manner similar to a capacitor. Use of lithium alloy circumvents problems with cycle life, dendrite formation, and safety. However, the system suffers from generally low energy density. [Pg.583]

The irreversible capacity results from formation of a surface-electrolyte interface (SEI) layer, and is believed to be caused by decomposition of the electrolyte on the surface of active material during few first charge cycles [3-5]. The values of irreversible capacity and the SEI are functions of the type of active material and the electrolyte. Also, the safety issue, which is believed to be associated with stability of SEI, has been identified as a major parameter in the equation [6-7]. The contribution of the negative electrode to the thermal runaway is believed to be related to the nature and also to the surface area of the active material [8-9]. [Pg.231]

Besides staging, the other important characteristic of the graphite negative electrode is the formation of the solid electrolyte interphase (SEI) during the first cycles [7, 8], The SEI comes mainly from surface reactions... [Pg.261]

For convenience, we will discuss here the formation of charges with the example of copper metal immersed in a solution of copper sulphate (comprising Cu2+ ions). We consider first the situation when the positive pole of a cell is, say, bromine in contact with bromide ions, causing the copper to be the negative electrode. [Pg.306]

Figure 9.2 Formation of an electrical double layer responsible for electroendosmotic flow in an uncoated fused-silica capillary. The negative charges on the surface of the capillary are neutralized by positive charges of cations present in the buffer, which form an electrical layer near the surface of the capillary. When the electric held is apphed, the positive charges migrate toward the negative electrode, generating a bulk flow of the solution contained within the column. Electroosmosis exhibits a flat prohle, in contrast to hydraulic flow, which is parabolic. Figure 9.2 Formation of an electrical double layer responsible for electroendosmotic flow in an uncoated fused-silica capillary. The negative charges on the surface of the capillary are neutralized by positive charges of cations present in the buffer, which form an electrical layer near the surface of the capillary. When the electric held is apphed, the positive charges migrate toward the negative electrode, generating a bulk flow of the solution contained within the column. Electroosmosis exhibits a flat prohle, in contrast to hydraulic flow, which is parabolic.
However, there are no known SB systems with Mg in aqueous solutions. The Mg anode s irreversibility in aqueous solutions is thought to be due, in part to the existence of monovalent Mg ions during the electrochemical discharge, in part to the selfcorrosion and film formation, and in part caused by other factors (136,140). All attempts to deposit this metal on the negative electrode from aqueous electrolytes have failed. It is claimed that the Mg cell with molten salt electrolyte, LiCl-KCl eut., is reversible (141) it operates at temperatures above the eutectic melting point, i.e. about 400°C. Small amounts of water might decrease the operating temperature. [Pg.287]

Intercalation of Cjq with lithium has been achieved by solid-state electrochemical doping [125]. In this technique, metallic lithium was used as the negative electrode and a polyethylene oxide lithium perchlorate (P(E0)8liCl04) polymer film served as electrolyte. The formation of stoichiometric phases Li Cgg (n = 0.5, 2, 3, 4, and 12) has been observed. [Pg.60]

Because of the nature of electroporation, virtually any molecule can be introduced into cells. For transfer of DNA, the electroporation forces are important. An electrophoretic effect of the field causes the polyanion DNA to travel toward the positive electrode. Fluorescence studies have shown that DNA enters the cell through the pole facing the negative electrode, where the membrane is more destabilized and where the field will drive the DNA towards the center of the cell (245). Membrane resealing occurs after pore formation. Whereas pore formation happens in the microsecond time frame, membrane resealing happens over a range of minutes with variations depending on electrical parameters and temperature (246). [Pg.363]

In lithium rechargeable batteries carbon materials are used that function as a lithium reservoir at the negative electrode. Reversible intercalation, or insertion, of lithium into the carbon host lattice avoids the problem of lithium dendrite formation and provides a large improvement in terms of cycleability and safety (111). [Pg.243]

Ohzuku T, Iwakoshi Y, Sawai K. Formation of lithium-graphite intercalation compounds in nonaqueous electrolytes and their application as a negative electrode for a lithium ion (shuttlecock) cell. J Electrochem Soc 1993 140 2490-2498. [Pg.501]


See other pages where Formation negative electrodes is mentioned: [Pg.17]    [Pg.330]    [Pg.359]    [Pg.360]    [Pg.210]    [Pg.308]    [Pg.354]    [Pg.358]    [Pg.415]    [Pg.263]    [Pg.594]    [Pg.299]    [Pg.425]    [Pg.350]    [Pg.14]    [Pg.825]    [Pg.826]    [Pg.115]    [Pg.393]    [Pg.45]    [Pg.550]    [Pg.430]    [Pg.149]    [Pg.177]    [Pg.252]    [Pg.40]    [Pg.264]    [Pg.290]    [Pg.291]    [Pg.294]    [Pg.295]    [Pg.303]    [Pg.305]    [Pg.360]    [Pg.363]    [Pg.491]    [Pg.492]    [Pg.498]    [Pg.303]    [Pg.122]    [Pg.213]   
See also in sourсe #XX -- [ Pg.72 , Pg.73 , Pg.73 ]




SEARCH



Electrode formation

Electrode negative

Negative electrodes formation process

© 2024 chempedia.info