Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Foams surface elasticity

The foregoing is an equilibrium analysis, yet some transient effects are probably important to film resilience. Rayleigh [182] noted that surface freshly formed by some insult to the film would have a greater than equilibrium surface tension (note Fig. 11-15). A recent analysis [222] of the effect of surface elasticity on foam stability relates the nonequilibrium surfactant surface coverage to the foam retention time or time for a bubble to pass through a wet foam. The adsorption process is important in a new means of obtaining a foam by supplying vapor phase surfactants [223]. [Pg.524]

Foams are thermodynamically unstable. To understand how defoamers operate, the various mechanisms that enable foams to persist must first be examined. There are four main explanations for foam stabiUty (/) surface elasticity (2) viscous drainage retardation effects (J) reduced gas diffusion between bubbles and (4) other thin-film stabilization effects from the iateraction of the opposite surfaces of the films. [Pg.464]

As is known, if one blows air bubbles in pure water, no foam is formed. On the other hand, if a detergent or protein (amphiphile) is present in the system, adsorbed surfactant molecules at the interface produce foam or soap bubble. Foam can be characterized as a coarse dispersion of a gas in a liquid, where the gas is the major phase volume. The foam, or the lamina of liquid, will tend to contract due to its surface tension, and a low surface tension would thus be expected to be a necessary requirement for good foam-forming property. Furthermore, in order to be able to stabilize the lamina, it should be able to maintain slight differences of tension in its different regions. Therefore, it is also clear that a pure liquid, which has constant surface tension, cannot meet this requirement. The stability of such foams or bubbles has been related to monomolecular film structures and stability. For instance, foam stability has been shown to be related to surface elasticity or surface viscosity, qs, besides other interfacial forces. [Pg.165]

Thin-liquid-film stability. The effect of surfactants on film and foam stability. Surface elasticity. Froth flotation. The Langmuir trough and monolayer deposition. Laboratory project on the flotation of powdered silica. [Pg.153]

The surface elasticity of the solution is an especially important property because it is at this point that the air is entrapped. The phenomenon of surface transport, by which a spreading monolayer drags with it significant quantities of the underlying solution and rapidly repairs thinning spots in a lamella, was suggested to occur in quality foaming solutions. [Pg.152]

Bendure indicates 10 ways to increase foam stability (1) increase bulk liquid viscosity, (2) increase surface viscosity, (3) maintain thick walls (higher liquid-to-gas ratio), (4) reduce liquid surface tension, (5) increase surface elasticity, (6) increase surface concentration, (7) reduce surfactant-adsorption rate, (8) prevent liquid evaporation, (9) avoid mechanical stresses, and (10) eliminate foam inhibitors. Obviously, the reverse of each of these actions, when possible, is a way to control and break foam. [Pg.128]

Surface elasticity facilitates the maintenance of a uniform film thickness, as discussed above however, the existence of rigid, condensed surface films is detrimental to foam stability, owing to the very small changes in area over which such films show elasticity. [Pg.275]

There is no simple, direct relationship between elasticity and emulsion or foam stability because additional factors, such as film thickness and adsorption behaviour, are also important [204]. Nevertheless, several researchers have found useful correlations between EM and emulsion or foam stability [131,201,203], The existence of surface elasticity explains why some substances that lower surface tension do not stabilize foams [25]. That is, they do not have the required rate of approach to equilibrium after a surface expansion or contraction as they do not have the necessary surface elasticity. Although greater surface elasticity tends to produce more stable bubbles, if the restoring force contributed by surface elasticity is not of sufficient magnitude, then persistent foams may not be formed due to the overwhelming effects of the gravitational and capillary forces. More stable foams may require additional stabilizing mechanisms. [Pg.88]

Foaming capability relates to both foam formation and foam persistence. Surface tension lowering is necessary, but not sufficient. Other important factors include surface elasticity, surface viscosity, and disjoining pressure [303], Considering stabil-... [Pg.141]

The stability of foams in constraining media, such as porous media, is much more complicated. Some combination of surface elasticity, surface viscosity and disjoining pressure is still needed, but the specific requirements for an effective foam in porous media remain elusive, partly because little relevant information is available and partly because what information there is appears to be somewhat conflicting. For example, both direct [304] and inverse [305] correlations have been found between surface elasticity and foam stability and performance in porous media. Overall, it is generally found that the effectiveness of foams in porous media is not reliably predicted based on bulk physical properties or on bulk foam measurements. Instead, it tends to be more useful to study the foaming properties in porous media at various laboratory scales micro-, meso-, and macro-scale. [Pg.142]

Although many factors, such as film thickness and adsorption behaviour, have to be taken into account, the ability of a surfactant to reduce surface tension and contribute to surface elasticity are among the most important features of foam stabilization (see Section 5.4.2). The relation between Marangoni surface elasticity and foam stability [201,204,305,443] partially explains why some surfactants will act to promote foaming while others reduce foam stability (foam breakers or defoamers), and still others prevent foam formation in the first place (foam preventatives, foam inhibitors). Continued research into the dynamic physical properties of thin-liquid films and bubble surfaces is necessary to more fully understand foaming behaviour. Schramm et al. [306] discuss some of the factors that must be considered in the selection of practical foam-forming surfactants for industrial processes. [Pg.210]

Any additives that can act to reduce the viscosity of foam films, and thereby increase the liquid drainage rate, will tend to reduce foam stability as a result. This includes any chemicals that can reduce surface viscosity and/or surface elasticity. Some alcohols can be use to produce these effects. [Pg.220]

It can be considered from the scheme that one has to distinguish between the foam kinetics, i.e. the rate of generation of foam under well defined conditions (air input and mechanical treatment) and the stability and lifetime of a foam once generated. The foam kinetics is also sometimes termed foamability in the literature. These quantities can be related to interfacial parameters such as dynamic surface tension, i.e. the non-equilibrium surface tension of a newly generated surface, interfacial rheology, dynamic surface elasticity and interfacial potential. In the case of the presence of oily droplets (e.g. an antifoam, a... [Pg.78]

Foam films of different size, shape and spatial orientation are obtained at the approach of individual bubbles or the surfaces of a biconcave drop, or at bubble contact with the solution/air interface, or at withdrawing a frame from a solution, etc. Individual foam bubbles are usually used in the study of foam properties. They prove to be most useful in many cases, for example, in the determination of foam film elasticity, the estimation of gas diffusion from the bubble through the film, the detection of the rupture of the foam bubble films [e.g. 1], Beginning with the remarkable bubbles of Boys [2] and reaching to present day studies, single foam bubbles have since long attracted a considerable interest (see, for instance, the monograph of Dukhin, Kretzschmar and Miller [3]). [Pg.42]

Langevin et al. [35,71] have proposed a simplified hydrodynamic model of thinning of microscopic foam films that accounts for the influence of surface elasticity on the rate of thinning in a large range of thicknesses and Ap. However, as noted by the authors, in view of the rapid loss of surfactant molecules at the surface during film drainage, the elasticity would not correspond to the actual bulk surfactant concentration but to lower values since the system is very far from equilibrium. Frequency dependence of surface elasticity has been considered by Tambe and Sharma [72]. [Pg.109]

The surface elasticity force is considered as the most important factor of stability of steady-state foams [113]. In the model of Malysa [123] it is assumed that a dynamic foam is a non-equilibrium system and phenomena occurring in the solution have an influence on the formation and stability of the foam. The foam collapse takes place only at the top of the foam bubbles at thickness larger than 100 nm, where fl = 0. So, the lifetime of the bubbles at the... [Pg.560]

The adsorbed surfactant film is assumed to control the mechanical-dynamical properties of the surface layers by virtue of its surface viscosity and elasticity. This concept may be true for thick films (>100 run) whereby intermolecular forces are less dominant (i.e., foam stability under dynamic conditions). Surface viscosity reflects the speed of the relaxation process which restores the equilibrium in the system after imposing a stress on it. Surface elasticity is a measure of the energy stored in the surface layer as a result of an external stress. [Pg.330]

Fig. 3. Examples of mass spectra of n-hexane/dichloromethane (FI) extractable surfactants isolated by foam tower stripping from a bulk surface seawater sample (upper), an unslicked microlayer (centre), and a heavily slicked microlayer (lower). The spectra show the dominance of polyoxy components in the bulk seawater surfactants and different degrees of enrichment of more hydrophobic lipid surfactants in the microlayer. Note that these particular spectra were chosen to illustrate the range of composition observed and the impact on surface elasticity (see Figure 4), not to represent bulk seawater, unslicked and slicked microlayers generally... Fig. 3. Examples of mass spectra of n-hexane/dichloromethane (FI) extractable surfactants isolated by foam tower stripping from a bulk surface seawater sample (upper), an unslicked microlayer (centre), and a heavily slicked microlayer (lower). The spectra show the dominance of polyoxy components in the bulk seawater surfactants and different degrees of enrichment of more hydrophobic lipid surfactants in the microlayer. Note that these particular spectra were chosen to illustrate the range of composition observed and the impact on surface elasticity (see Figure 4), not to represent bulk seawater, unslicked and slicked microlayers generally...
Miller R, Fainerman VB, Aksenenko EV, Makievski AV, Kraegel J, Liggieri L, Ravera F, Wuestneck R, and Loglio G (2000) "Surfactant Adsorption Kinetics and Exchange of Matter for Surfactant Molecules with Changing Orientation within the Adsorption Layer" in Emulsion, Foams, and Thin Films, Mittal and Kumar Editors, Ch. 18, Marcel Dekker, pp. 313-327 Miller R, Fainerman VB, Makievski AV, Leser M, Michel M and Aksenenko EV (2004) Determination of Protein Adsorption by Comparative Drop and Bubble Profile Analysis Tensiometry. Colloids Surfaces B 36 123-126 Neumann AW and Spelt JK Eds., Applied Surface Thermodynamics, Surfactant Science Series, Vol. 63, Marcel Dekker Inc., New York, 1996 Noskov B and Logho G (1998) Dynamic surface elasticity of surfactant solutions. Colloids Surfaces A 143 167-183... [Pg.102]

Many surfactant solutions show dynamic surface tension behavior. That is, some time is required to establish the equilibrium surface tension. If the surface area of the solution is suddenly increased or decreased (locally), then the adsorbed surfactant layer at the interface would require some time to restore its equilibrium surface concentration by diffusion of surfactant from or to the bulk liquid. In the meantime, the original adsorbed surfactant layer is either expanded or contracted because surface tension gradients are now in effect, Gibbs—Marangoni forces arise and act in opposition to the initial disturbance. The dissipation of surface tension gradients to achieve equilibrium embodies the interface with a finite elasticity. This fact explains why some substances that lower surface tension do not stabilize foams (6) They do not have the required rate of approach to equilibrium after a surface expansion or contraction. In other words, they do not have the requisite surface elasticity. [Pg.25]


See other pages where Foams surface elasticity is mentioned: [Pg.88]    [Pg.128]    [Pg.88]    [Pg.128]    [Pg.1418]    [Pg.1443]    [Pg.72]    [Pg.819]    [Pg.149]    [Pg.102]    [Pg.276]    [Pg.71]    [Pg.220]    [Pg.228]    [Pg.110]    [Pg.1241]    [Pg.1266]    [Pg.270]    [Pg.1655]    [Pg.328]    [Pg.329]    [Pg.239]    [Pg.183]    [Pg.48]    [Pg.127]    [Pg.138]    [Pg.140]    [Pg.212]    [Pg.24]    [Pg.25]    [Pg.26]    [Pg.27]   
See also in sourсe #XX -- [ Pg.305 ]




SEARCH



Elasticity, surface

Foamed surfaces

Surface FOAMS]

© 2024 chempedia.info